
D
eJong

he
N

G
IN

X C
ookb

ook
N

G
IN

X C
ookb

ook

Third
Edition

NGINX
Cookbook
Advanced Recipes for High-Performance
Load Balancing

Derek DeJonghe

Compliments of

SYSTEM ADMINISTR ATION

NGINX Cookbook

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

NGINX is one of the most widely used web servers available
today, in part because of its capabilities as a load balancer and
reverse proxy server for HTTP and other network protocols.
This revised cookbook provides easy-to-follow examples of
real-world problems in application delivery. Practical recipes
help you set up and use either the open source or commercial
offering to solve problems in various use cases.

For professionals who understand modern web architectures
such as n-tier or microservice designs and common web
protocols such as TCP and HTTP, these recipes include
proven solutions for security and software load balancing
and for monitoring and maintaining NGINX’s application
delivery platform. You’ll also explore advanced features
of both NGINX and NGINX Plus, the free and licensed
versions of this server.

You’ll find recipes for:

•	 High-performance load balancing with HTTP, TCP, and UDP

•	 Securing access through encrypted traffic, secure links,
HTTP authentication subrequests, and more

•	 Deploying NGINX to Google, AWS, and Azure Cloud Services

•	 NGINX Plus as a service provider in a SAML environment

•	 HTTP/3 (QUIC), OpenTelemetry, and the njs module

Derek DeJonghe, an Amazon
Web Services Certified Professional,
specializes in Linux/Unix-based
systems and web applications.
His background in web development,
system administration, and
networking makes him a valuable
cloud resource. Derek focuses
on infrastructure management,
configuration management, and
continuous integration.
He also develops DevOps tools
and maintains the systems, networks,
and deployments of multiple
multi-tenant SaaS offerings.

9 7 8 1 0 9 8 1 4 6 5 4 2

5 7 9 9 9

US $79.99	 CAN $99.99
ISBN: 978-1-098-14654-2

3E

9 7 8 1 0 9 8 1 5 8 4 4 6

ISBN: 978-1-098-15844-6

 Try F5 NGINX Plus and
 F5 NGINX App Protect free
Get High-performance Application Delivery and Security for Microservices

NGINX Plus is a software load balancer, �API gateway, and microservices proxy.

NGINX App Protect is a lightweight, fast web application firewall (WAF) built on
proven F5 technology and designed for modern apps and DevOps environments.

©2024 F5, Inc. All rights reserved. F5, the F5 logo, NGINX, the NGINX logo, NGINX App Protect, and NGINX Plus are trademarks of F5, Inc. in the
U.S. and in certain other countries. Other F5 trademarks are identified at f5.com. Any other products, services, or company names referenced
herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.

Cost Savings
Significant cost savings compared
to hardware application delivery
controllers and WAFs, with all the
performance and features you expect.

Reduced Complexity
The only all-in-one load balancer,
API gateway, microservices proxy,
and web application firewall helps
reduce infrastructure sprawl.

Enterprise Ready
NGINX Plus and NGINX App Protect
deliver enterprise requirements for
security, scalability, and resiliency
while integrating with DevOps and
CI/CD environments.

Advanced Security
Keep your apps and APIs safe from the
ever-expanding range of cyberattacks
and security vulnerabilities.

Download at nginx.com/freetrial

https://www.nginx.com
https://www.f5.com
https://www.nginx.com/products/nginx-app-protect/
https://www.nginx.com/products/nginx/
https://www.nginx.com/free-trial-request/
https://nginx.com/freetrial

Derek DeJonghe

NGINX Cookbook
Advanced Recipes for High-Performance

Load Balancing

THIRD EDITION

978-1-098-15844-6

[LSI]

NGINX Cookbook
by Derek DeJonghe

Copyright © 2024 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Gary O’Brien
Production Editor: Clare Laylock
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Kim Cofer

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2020: First Edition
May 2022: Second Edition
February 2024: Third Edition

Revision History for the Third Edition
2024-01-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098158439 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. NGINX Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098158439
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. xi

Preface. xiii

1. Basics. 1
1.0 Introduction 1
1.1 Installing NGINX on Debian/Ubuntu 1
1.2 Installing NGINX Through the YUM Package Manager 2
1.3 Installing NGINX Plus 3
1.4 Verifying Your Installation 3
1.5 Key Files, Directories, and Commands 4
1.6 Using Includes for Clean Configs 6
1.7 Serving Static Content 7

2. High-Performance Load Balancing. 9
2.0 Introduction 9
2.1 HTTP Load Balancing 10
2.2 TCP Load Balancing 11
2.3 UDP Load Balancing 13
2.4 Load-Balancing Methods 14
2.5 Sticky Cookie with NGINX Plus 17
2.6 Sticky Learn with NGINX Plus 18
2.7 Sticky Routing with NGINX Plus 19
2.8 Connection Draining with NGINX Plus 20
2.9 Passive Health Checks 21

v

2.10 Active Health Checks with NGINX Plus 22
2.11 Slow Start with NGINX Plus 24

3. Traffic Management. 25
3.0 Introduction 25
3.1 A/B Testing 25
3.2 Using the GeoIP Module and Database 27
3.3 Restricting Access Based on Country 30
3.4 Finding the Original Client 31
3.5 Limiting Connections 32
3.6 Limiting Rate 34
3.7 Limiting Bandwidth 35

4. Massively Scalable Content Caching. 37
4.0 Introduction 37
4.1 Caching Zones 37
4.2 Caching Hash Keys 39
4.3 Cache Locking 40
4.4 Use Stale Cache 40
4.5 Cache Bypass 41
4.6 Cache Purging with NGINX Plus 42
4.7 Cache Slicing 43

5. Programmability and Automation. 45
5.0 Introduction 45
5.1 NGINX Plus API 45
5.2 Using the Key-Value Store with NGINX Plus 49
5.3 Using the njs Module to Expose JavaScript Functionality Within NGINX 51
5.4 Extending NGINX with a Common Programming Language 54
5.5 Installing with Ansible 56
5.6 Installing with Chef 58
5.7 Automating Configurations with Consul Templating 59

6. Authentication. 63
6.0 Introduction 63
6.1 HTTP Basic Authentication 63
6.2 Authentication Subrequests 65
6.3 Validating JWTs with NGINX Plus 66
6.4 Creating JSON Web Keys 68
6.5 Authenticate Users via Existing OpenID Connect SSO with NGINX Plus 69
6.6 Validate JSON Web Tokens (JWT) with NGINX Plus 70

vi | Table of Contents

6.7 Automatically Obtaining and Caching JSON
Web Key Sets with NGINX Plus 71

6.8 Configuring NGINX Plus as a Service Provider for SAML Authentication 72

7. Security Controls. 77
7.0 Introduction 77
7.1 Access Based on IP Address 77
7.2 Allowing Cross-Origin Resource Sharing 78
7.3 Client-Side Encryption 79
7.4 Advanced Client-Side Encryption 81
7.5 Upstream Encryption 83
7.6 Securing a Location 84
7.7 Generating a Secure Link with a Secret 84
7.8 Securing a Location with an Expire Date 85
7.9 Generating an Expiring Link 86
7.10 HTTPS Redirects 88
7.11 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX 89
7.12 HTTP Strict Transport Security 89
7.13 Restricting Access Based on Country 90
7.14 Satisfying Any Number of Security Methods 92
7.15 NGINX Plus Dynamic Application Layer DDoS Mitigation 92
7.16 Installing and Configuring NGINX Plus

with the NGINX App Protect WAF Module 94

8. HTTP/2 and HTTP/3 (QUIC). 99
8.0 Introduction 99
8.1 Enabling HTTP/2 99
8.2 Enabling HTTP/3 100
8.3 gRPC 102

9. Sophisticated Media Streaming. 105
9.0 Introduction 105
9.1 Serving MP4 and FLV 105
9.2 Streaming with HLS with NGINX Plus 106
9.3 Streaming with HDS with NGINX Plus 107
9.4 Bandwidth Limits with NGINX Plus 108

10. Cloud Deployments. 109
10.0 Introduction 109
10.1 Auto-Provisioning 109
10.2 Deploying an NGINX VM in the Cloud 111

Table of Contents | vii

10.3 Creating an NGINX Machine Image 112
10.4 Routing to NGINX Nodes Without a Cloud Native Load Balancer 113
10.5 The Load Balancer Sandwich 115
10.6 Load Balancing over Dynamically Scaling NGINX Servers 117
10.7 Creating a Google App Engine Proxy 118

11. Containers/Microservices. 121
11.0 Introduction 121
11.1 Using NGINX as an API Gateway 122
11.2 Using DNS SRV Records with NGINX Plus 126
11.3 Using the Official NGINX Container Image 127
11.4 Creating an NGINX Dockerfile 128
11.5 Building an NGINX Plus Container Image 132
11.6 Using Environment Variables in NGINX 133
11.7 NGINX Ingress Controller from NGINX 134

12. High-Availability Deployment Modes. 137
12.0 Introduction 137
12.1 NGINX Plus HA Mode 137
12.2 Load Balancing Load Balancers with DNS 140
12.3 Load Balancing on EC2 141
12.4 NGINX Plus Configuration Synchronization 142
12.5 State Sharing with NGINX Plus and Zone Sync 144

13. Advanced Activity Monitoring. 147
13.0 Introduction 147
13.1 Enable NGINX Stub Status 147
13.2 Enabling the NGINX Plus Monitoring Dashboard 148
13.3 Collecting Metrics Using the NGINX Plus API 150
13.4 OpenTelemetry for NGINX 153
13.5 Prometheus Exporter Module 157

14. Debugging and Troubleshooting with Access Logs, Error Logs,
and Request Tracing. 159
14.0 Introduction 159
14.1 Configuring Access Logs 159
14.2 Configuring Error Logs 161
14.3 Forwarding to Syslog 162
14.4 Debugging Configs 163
14.5 Request Tracing 164

viii | Table of Contents

15. Performance Tuning. 167
15.0 Introduction 167
15.1 Automating Tests with Load Drivers 167
15.2 Controlling Cache at the Browser 168
15.3 Keeping Connections Open to Clients 169
15.4 Keeping Connections Open Upstream 169
15.5 Buffering Responses 170
15.6 Buffering Access Logs 171
15.7 OS Tuning 172

Index. 175

Table of Contents | ix

Foreword

Welcome to the 2024 edition of the NGINX Cookbook. O’Reilly has been publishing
the NGINX Cookbook for nine years, and we continue to update the content to reflect
the many improvements that regularly go into NGINX. Today, NGINX is the world’s
most popular web server. We first released NGINX in 2004, and the product contin‐
ues to evolve to meet the needs of those charged with scaling, securing, and delivering
modern applications. We architected NGINX for flexibility and scale, which has made
it possible to extend its capabilities beyond web serving to load balancing, reverse
proxy, and API gateway. And we take it as a testament to the value of NGINX that
many of the loadbalancing services offered by major public clouds and CDNs are
actually based on NGINX code.

NGINX also continues to expand into new realms and add critical capabilities.
NGINX Ingress Controller for Kubernetes is natively integrated with NGINX and
provides key capabilities for managing both east-west and north-south traffic, a criti‐
cal requirement in the world of Kubernetes. NGINX also has consistently expanded
its authentication and security capabilities. None of this would matter if NGINX did
not continue to deliver speed, resilience, and agility—all fundamental requirements
of modern distributed applications.

The NGINX Cookbook remains the go-to guide to NGINX from the people who know
the code best. Whether you are running NGINX Open Source for a small project or
NGINX Plus for an enterprise deployment across multiple regions, and whether you
are running locally or in the cloud, NGINX Cookbook helps you get the most out of
NGINX. This book features more than one hundred easy-to-follow recipes covering
how to install NGINX, configure it for almost any use case, secure it, scale it, and
troubleshoot common issues.

The 2024 edition includes updates to many sections to reflect new functionality in
NGINX and adds entirely new sections focused on expanded security capabilities and
effectively leveraging HTTP/2, HTTP/3 (QUIC), and gRPC. The world of technology
and applications is changing fast, and NGINX is changing with it to continue contri‐
buting to your success. The original vision of NGINX was highly scalable, reliable,
fast, and secure web serving. Everything we do today is built on that original vision
and designed to help our community secure and deploy the apps they need, in any
environment, at any scale, with confidence and trust.

xi

Please enjoy this latest edition and feel free to let us know what you think. We are
listening and want to hear from you.

—Peter Beardmore
Director of Product Marketing,

F5 NGINX

xii | Foreword

Preface

The NGINX Cookbook aims to provide easy-to-follow examples of real-world prob‐
lems in application delivery. Throughout this book, you will explore the many
features of NGINX and how to use them. This guide is fairly comprehensive, and
touches on most of the main capabilities of NGINX.

The book will begin by explaining the installation process of NGINX and NGINX
Plus, as well as some basic getting-started steps for readers new to NGINX. From
there, the sections will progress to load balancing in all forms, accompanied by chap‐
ters about traffic management, caching, and automation. Chapter 6, “Authentication”,
covers a lot of ground, but it is important because NGINX is often the first point of
entry for web traffic to your application, and the first line of application-layer defense
against web attacks and vulnerabilities. There are a number of chapters that cover
cutting-edge topics such as HTTP/3 (QUIC), media streaming, cloud, SAML Auth,
and container environments—wrapping up with more traditional operational topics
such as monitoring, debugging, performance, and operational tips.

I personally use NGINX as a multitool, and I believe this book will enable you to do
the same. It’s software that I believe in and enjoy working with. I’m happy to share
this knowledge with you, and I hope that as you read through this book you relate the
recipes to your real-world scenarios and will employ these solutions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xiii

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/nginx-cookbook-3e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

xiv | Preface

http://oreilly.com
http://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/nginx-cookbook-3e
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

CHAPTER 1

Basics

1.0 Introduction
To get started with NGINX Open Source or NGINX Plus, you first need to install
it on a system and learn some basics. In this chapter, you will learn how to install
NGINX, where the main configuration files are located, and what the commands
are for administration. You will also learn how to verify your installation and make
requests to the default server.

Some of the recipes in this book will use NGINX Plus. You can get a free trial of
NGINX Plus at https://nginx.com.

1.1 Installing NGINX on Debian/Ubuntu
Problem
You need to install NGINX Open Source on a Debian or Ubuntu machine.

Solution
Update package information for configured sources and install some packages that
will assist in configuring the official NGINX package repository:

$ apt update
$ apt install -y curl gnupg2 ca-certificates lsb-release \
 debian-archive-keyring

Download and save the NGINX signing key:

$ curl https://nginx.org/keys/nginx_signing.key | gpg --dearmor \
 | tee /usr/share/keyrings/nginx-archive-keyring.gpg >/dev/null

1

https://nginx.com

Use lsb_release to set variables defining the OS and release names, then create an
apt source file:

$ OS=$(lsb_release -is | tr '[:upper:]' '[:lower:]')
$ RELEASE=$(lsb_release -cs)
$ echo "deb [signed-by=/usr/share/keyrings/nginx-archive-keyring.gpg] \
 http://nginx.org/packages/${OS} ${RELEASE} nginx" \
 | tee /etc/apt/sources.list.d/nginx.list

Update package information once more, then install NGINX:

$ apt update
$ apt install -y nginx
$ systemctl enable nginx
$ nginx

Discussion
The commands provided in this section instruct the advanced package tool (APT)
package management system to utilize the official NGINX package repository. The
NGINX GPG package signing key was downloaded and saved to a location on the
filesystem for use by APT. Providing APT the signing key enables the APT system
to validate packages from the repository. The lsb_release command was used to
automatically determine the OS and release name so that these instructions can be
used across all release versions of Debian or Ubuntu. The apt update command
instructs the APT system to refresh its package listings from its known repositories.
After the package list is refreshed, you can install NGINX Open Source from the
official NGINX repository. After you install it, the final command starts NGINX.

1.2 Installing NGINX Through the YUM Package Manager
Problem
You need to install NGINX Open Source on Red Hat Enterprise Linux (RHEL),
Oracle Linux, AlmaLinux, Rocky Linux, or CentOS.

Solution
Create a file named /etc/yum.repos.d/nginx.repo that contains the following contents:

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/$releasever/$basearch/
gpgcheck=0
enabled=1

2 | Chapter 1: Basics

Alter the file, replacing OS in the middle of the URL with rhel or centos, depending
on your distribution. Then, run the following commands:

$ yum -y install nginx
$ systemctl enable nginx
$ systemctl start nginx
$ firewall-cmd --permanent --zone=public --add-port=80/tcp
$ firewall-cmd --reload

Discussion
The file you just created for this solution instructs the YUM package management
system to utilize the official NGINX Open Source package repository. The commands
that follow install NGINX Open Source from the official repository, instruct systemd to
enable NGINX at boot time, and tell it to start NGINX now. If necessary, the firewall
commands open port 80 for the transmission control protocol (TCP), which is the
default port for HTTP. The last command reloads the firewall to commit the changes.

1.3 Installing NGINX Plus
Problem
You need to install NGINX Plus.

Solution
Visit the NGINX docs. Select the OS you’re installing to and then follow the instruc‐
tions. The instructions are similar to those of the installation of the open source
solutions; however, you need to obtain a certificate and key in order to authenticate to
the NGINX Plus repository.

Discussion
NGINX keeps this repository installation guide up-to-date with instructions on
installing NGINX Plus. Depending on your OS and version, these instructions vary
slightly, but there is one commonality. You must obtain a certificate and key from
the NGINX portal, and provide them to your system, in order to authenticate to the
NGINX Plus repository.

1.4 Verifying Your Installation
Problem
You want to validate the NGINX installation and check the version.

1.3 Installing NGINX Plus | 3

https://oreil.ly/U97s8

Solution
You can verify that NGINX is installed and check its version by using the following
command:

$ nginx -v
nginx version: nginx/1.25.3

As this example shows, the response displays the version.

You can confirm that NGINX is running by using the following command:

$ ps -ef | grep nginx
root 1738 1 0 19:54 ? 00:00:00 nginx: master process
nginx 1739 1738 0 19:54 ? 00:00:00 nginx: worker process

The ps command lists running processes. By piping it to grep, you can search for
specific words in the output. This example uses grep to search for nginx. The result
shows two running processes: a master and worker. If NGINX is running, you will
always see a master and one or more worker processes. Note the master process is
running as root, as, by default, NGINX needs elevated privileges in order to function
properly. For instructions on starting NGINX, refer to the next recipe. To see how to
start NGINX as a daemon, use the init.d or systemd methodologies.

To verify that NGINX is returning requests correctly, use your browser to make a
request to your machine or use curl. When making the request, use the machine’s IP
address or hostname. If installed locally, you can use localhost as follows:

$ curl localhost

You will see the NGINX Welcome default HTML site.

Discussion
The nginx command allows you to interact with the NGINX binary to check the
version, list installed modules, test configurations, and send signals to the master
process. NGINX must be running in order for it to serve requests. The ps command
is a surefire way to determine whether NGINX is running either as a daemon or in
the foreground. The configuration provided by default with NGINX runs a static-site
HTTP server on port 80. You can test this default site by making an HTTP request to
the machine at localhost. You should use the host’s IP and hostname.

1.5 Key Files, Directories, and Commands
Problem
You need to understand the important NGINX directories and commands.

4 | Chapter 1: Basics

Solution
The following configuration directories and file locations can be changed during the
compilation of NGINX and therefore may vary based on your installation.

NGINX files and directories

/etc/nginx/
The /etc/nginx/ directory is the default configuration root for the NGINX server.
Within this directory you will find configuration files that instruct NGINX on
how to behave.

/etc/nginx/nginx.conf
The /etc/nginx/nginx.conf file is the default configuration entry point used by
the NGINX daemon. This configuration file sets up global settings for things
like worker processes, tuning, logging, loading dynamic modules, and references
to other NGINX configuration files. In a default configuration, the /etc/nginx/
nginx.conf file includes the top-level http block, or context, which includes all
configuration files in the directory described next.

/etc/nginx/conf.d/
The /etc/nginx/conf.d/ directory contains the default HTTP server configuration
file. Files in this directory ending in .conf are included in the top-level http block
from within the /etc/nginx/nginx.conf file. It’s best practice to utilize include
statements and organize your configuration in this way to keep your configura‐
tion files concise. In some package repositories, this folder is named sites-enabled,
and configuration files are linked from a folder named site-available; this conven‐
tion is deprecated.

/var/log/nginx/
The /var/log/nginx/ directory is the default log location for NGINX. Within this
directory you will find an access.log file and an error.log file. By default the access
log contains an entry for each request NGINX serves. The error logfile contains
error events and debug information if the debug module is enabled.

NGINX commands

nginx -h

Shows the NGINX help menu.

nginx -v

Shows the NGINX version.

nginx -V

Shows the NGINX version, build information, and configuration arguments,
which show the modules built into the NGINX binary.

1.5 Key Files, Directories, and Commands | 5

nginx -t

Tests the NGINX configuration.

nginx -T

Tests the NGINX configuration and prints the validated configuration to the
screen. This command is useful when seeking support.

nginx -s signal

The -s flag sends a signal to the NGINX master process. You can send signals
such as stop, quit, reload, and reopen. The stop signal discontinues the
NGINX process immediately. The quit signal stops the NGINX process after
it finishes processing in-flight requests. The reload signal reloads the configura‐
tion. The reopen signal instructs NGINX to reopen logfiles.

Discussion
With an understanding of these key files, directories, and commands, you’re in a
good position to start working with NGINX. Using this knowledge, you can alter the
default configuration files and test your changes with the nginx -t command. If your
test is successful, you also know how to instruct NGINX to reload its configuration
using the nginx -s reload command.

1.6 Using Includes for Clean Configs
Problem
You need to clean up bulky configuration files to keep your configurations logically
grouped into modular configuration sets.

Solution
Use the include directive to reference configuration files, directories, or masks:

http {
 include conf.d/compression.conf;
 include ssl_config/*.conf
}

The include directive takes a single parameter of either a path to a file or a mask that
matches many files. This directive is valid in any context.

Discussion
By using include statements you can keep your NGINX configuration clean and
concise. You’ll be able to logically group your configurations to avoid configuration
files that go on for hundreds of lines. You can create modular configuration files

6 | Chapter 1: Basics

that can be included in multiple places throughout your configuration to avoid
duplication of configurations.

Take the example fastcgi_param configuration file provided in most package manage‐
ment installs of NGINX. If you manage multiple FastCGI virtual servers on a single
NGINX box, you can include this configuration file for any location or context where
you require these parameters for FastCGI without having to duplicate this configura‐
tion. Another example is Secure Sockets Layer (SSL) configurations. If you’re running
multiple servers that require similar SSL configurations, you can simply write this
configuration once and include it wherever needed.

By logically grouping your configurations together, you can rest assured that your
configurations are neat and organized. Changing a set of configuration files can be
done by editing a single file rather than changing multiple sets of configuration
blocks in multiple locations within a massive configuration file. Grouping your con‐
figurations into files and using include statements is good practice for your sanity
and the sanity of your colleagues.

1.7 Serving Static Content
Problem
You need to serve static content with NGINX.

Solution
Overwrite the default HTTP server configuration located in /etc/nginx/conf.d/
default.conf with the following NGINX configuration example:

server {
 listen 80 default_server;
 server_name www.example.com;

 location / {
 root /usr/share/nginx/html;
 # alias /usr/share/nginx/html;
 index index.html index.htm;
 }
}

Discussion
This configuration serves static files over HTTP on port 80 from the directory /usr/
share/nginx/html/. The first line in this configuration defines a new server block.
This defines a new context that specifies what NGINX listens for. Line two instructs
NGINX to listen on port 80, and the default_server parameter instructs NGINX to

1.7 Serving Static Content | 7

use this server as the default context for port 80. The listen directive can also take
a range of ports. The server_name directive defines the hostname or the names of
requests that should be directed to this server. If the configuration had not defined
this context as the default_server, NGINX would direct requests to this server only
if the HTTP host header matched the value provided to the server_name directive.
With the default_server context set, you can omit the server_name directive if you
do not yet have a domain name to use.

The location block defines a configuration based on the path in the URL. The
path, or portion of the URL after the domain, is referred to as the uniform resource
identifier (URI). NGINX will best match the URI requested to a location block. The
example uses / to match all requests. The root directive shows NGINX where to look
for static files when serving content for the given context. The URI of the request
is appended to the root directive’s value when looking for the requested file. If we
had provided a URI prefix to the location directive, this would be included in the
appended path, unless we used the alias directive rather than root. The location
directive is able to match a wide range of expressions. Visit the first link in the “See
Also” section for more information. Finally, the index directive provides NGINX
with a default file, or list of files to check, in the event that no further path is provided
in the URI.

See Also
NGINX HTTP location Directive Documentation

NGINX Request Processing

8 | Chapter 1: Basics

https://oreil.ly/-TNyO
https://oreil.ly/8gOTl

CHAPTER 2

High-Performance Load Balancing

2.0 Introduction
Today’s internet user experience demands performance and uptime. To achieve this,
multiple copies of the same system are run, and the load is distributed over them.
As the load increases, another copy of the system can be brought online. This
architecture technique is called horizontal scaling. Software-based infrastructure is
increasing in popularity because of its flexibility, opening up a vast world of possibili‐
ties. Whether the use case is as small as a set of two system copies for high availability,
or as large as thousands around the globe, there’s a need for a load-balancing solution
that is as dynamic as the infrastructure. NGINX fills this need in a number of ways,
such as HTTP, transmission control protocol (TCP), and user datagram protocol
(UDP) load balancing, which we cover in this chapter.

When balancing load, it’s important that the impact to the client’s experience is
entirely positive. Many modern web architectures employ stateless application tiers,
storing state in shared memory or databases. However, this is not the reality for all.
Session state is immensely valuable and vastly used in interactive applications. This
state might be stored locally to the application server for a number of reasons; for
example, in applications for which the data being worked is so large that network
overhead is too expensive in performance. When state is stored locally to an appli‐
cation server, it is extremely important to the user experience that the subsequent
requests continue to be delivered to the same server. Another facet of the situation
is that servers should not be released until the session has finished. Working with
stateful applications at scale requires an intelligent load balancer. NGINX offers
multiple ways to solve this problem by tracking cookies or routing. This chapter
covers session persistence as it pertains to load balancing with NGINX.

9

It’s important to ensure that the application that NGINX is serving is healthy.
Upstream requests may begin to fail for a number of reasons. It could be because of
network connectivity, server failure, or application failure, to name a few. Proxies and
load balancers must be smart enough to detect failure of upstream servers (servers
behind the load balancer or proxy) and stop passing traffic to them; otherwise, the
client will be waiting, only to be delivered a timeout.

A way to mitigate service degradation when a server fails is to have the proxy check
the health of the upstream servers. NGINX offers two different types of health checks:
passive, available in NGINX Open Source; and active, available only in NGINX Plus.
Active health checks at regular intervals will make a connection or request to the
upstream server, and can verify that the response is correct. Passive health checks
monitor the connection or responses of the upstream server as clients make the
request or connection. You might want to use passive health checks to reduce the
load of your upstream servers, and you might want to use active health checks to
determine failure of an upstream server before a client is served a failure. The tail end
of this chapter examines monitoring the health of the upstream application servers
for which you’re load balancing.

2.1 HTTP Load Balancing
Problem
You need to distribute load between two or more HTTP servers.

Solution
Use NGINX’s HTTP module to load balance over HTTP servers using the upstream
block:

upstream backend {
 server 10.10.12.45:80 weight=1;
 server app.example.com:80 weight=2;
 server spare.example.com:80 backup;
}
server {
 location / {
 proxy_pass http://backend;
 }
}

This configuration balances load across two HTTP servers on port 80, and defines
one as a backup, which is used when the two primary servers are unavailable. The
optional weight parameter instructs NGINX to pass twice as many requests to the
second server. When not used, the weight parameter defaults to 1.

10 | Chapter 2: High-Performance Load Balancing

Discussion
The HTTP upstream module controls the load balancing for HTTP requests.
This module defines a pool of destinations—any combination of Unix sockets, IP
addresses, and server hostnames, or a mix. The upstream module also defines how
any individual request is assigned to any of the upstream servers.

Each upstream destination is defined in the upstream pool by the server directive.
Along with the address of the upstream server, the server directive also takes
optional parameters. The optional parameters give more control over the routing
of requests. These parameters include the weight of the server in the balancing
algorithm; whether the server is in standby mode, available, or unavailable; and how
to determine if the server is unavailable. NGINX Plus provides a number of other
convenient parameters, like connection limits to the server, advanced DNS resolution
control, and the ability to slowly ramp up connections to a server after it starts.

2.2 TCP Load Balancing
Problem
You need to distribute load between two or more TCP servers.

Solution
Use NGINX’s stream module to load balance over TCP servers using the upstream
block:

stream {
 upstream mysql_read {
 server read1.example.com:3306 weight=5;
 server read2.example.com:3306;
 server 10.10.12.34:3306 backup;
 }

 server {
 listen 3306;
 proxy_pass mysql_read;
 }
}

The server block in this example instructs NGINX to listen on TCP port 3306 and
balance load between two MySQL database read replicas. The configuration lists
another server as a backup that will be passed traffic if the primaries are down.

2.2 TCP Load Balancing | 11

This configuration is not to be added to the conf.d folder, as, by default, that folder
is included within an http block; instead, you should create another folder named
stream.conf.d, open the stream block in the nginx.conf file, and include the new folder
for stream configurations. An example follows.

In the /etc/nginx/nginx.conf configuration file:

user nginx;
worker_processes auto;
pid /run/nginx.pid;

stream {
 include /etc/nginx/stream.conf.d/*.conf;
}

A file named /etc/nginx/stream.conf.d/mysql_reads.conf may include the following
configuration:

upstream mysql_read {
 server read1.example.com:3306 weight=5;
 server read2.example.com:3306;
 server 10.10.12.34:3306 backup;
}

server {
 listen 3306;
 proxy_pass mysql_read;
}

Discussion
The main difference between the http and stream contexts is that they operate at
different layers of the OSI model. The http context operates at the application layer,
7, and stream operates at the transport layer, 4. This does not mean that the stream
context cannot become application-aware with some clever scripting; however, the
http context is specifically designed to fully understand the HTTP protocol, and the
stream context, by default, simply routes and load balances packets.

TCP load balancing is defined by the NGINX stream module. The stream module,
like the HTTP module, allows you to define upstream pools of servers and configure
a listening server. When configuring a server to listen on a given port, you must
define the port it will listen on, or optionally, an address and a port. From there,
a destination must be configured, whether it be a direct reverse proxy to another
address or an upstream pool of resources.

A number of options that alter the properties of the reverse proxy of the TCP
connection are available for configuration. Some of these include SSL/TLS validation
limitations, timeouts, and keepalives. Some of the values of these proxy options can

12 | Chapter 2: High-Performance Load Balancing

be (or contain) variables, such as the download rate and the name used to verify an
SSL/TLS certificate.

The upstream for TCP load balancing is much like the upstream for HTTP, in that it
defines upstream resources as servers, configured with Unix socket, IP, or FQDN, as
well as server weight, maximum number of connections, DNS resolvers, connection
ramp-up periods, and if the server is active, down, or in backup mode.

NGINX Plus offers even more features for TCP load balancing. These advanced
features can be found throughout this book. Health checks for all load balancing will
be covered later in this chapter.

2.3 UDP Load Balancing
Problem
You need to distribute load between two or more UDP servers.

Solution
Use NGINX’s stream module to load balance over UDP servers using the upstream
block defined as udp:

stream {
 upstream ntp {
 server ntp1.example.com:123 weight=2;
 server ntp2.example.com:123;
 }

 server {
 listen 123 udp;
 proxy_pass ntp;
 }
}

This section of configuration balances load between two upstream network time
protocol (NTP) servers using the UDP protocol. Specifying UDP load balancing is as
simple as using the udp parameter on the listen directive.

If the service over which you’re load balancing requires multiple packets to be sent
back and forth between client and server, you can specify the reuseport parameter.
Examples of these types of services are OpenVPN, Voice over Internet Protocol
(VoIP), virtual desktop solutions, and Datagram Transport Layer Security (DTLS).
The following is an example of using NGINX to handle OpenVPN connections and
proxy them to the OpenVPN service running locally:

2.3 UDP Load Balancing | 13

stream {
 server {
 listen 1195 udp reuseport;
 proxy_pass 127.0.0.1:1194;
 }
}

Discussion
You might ask, “Why do I need a load balancer when I can have multiple hosts in
a DNS A or service record (SRV record)?” The answer is that not only are there
alternative balancing algorithms with which we can balance, but we can also load
balance the DNS servers themselves. UDP services make up a lot of the services that
we depend on in networked systems, such as DNS, NTP, QUIC, HTTP/3, and VoIP.
UDP load balancing might be less common to some, but it’s just as useful in the world
of scale.

You can find UDP load balancing in the stream module, just like TCP, and configure
it mostly in the same way. The main difference is that the listen directive specifies
that the open socket is for working with datagrams. When working with datagrams,
there are some other directives that might apply where they would not in TCP, such
as the proxy_responses directive, which specifies to NGINX how many expected
responses can be sent from the upstream server. By default, this is unlimited until the
proxy_timeout limit is reached. The proxy_timeout directive sets the time between
two successive read-or-write operations on client or proxied server connections
before the connection is closed.

The reuseport parameter instructs NGINX to create an individual listening socket
for each worker process. This allows the kernel to distribute incoming connections
between worker processes to handle multiple packets being sent between client and
server. The reuseport feature works only on Linux kernels 3.9 and higher, DragonFly
BSD, and FreeBSD 12 and higher.

2.4 Load-Balancing Methods
Problem
Round-robin load balancing doesn’t fit your use case because you have heterogeneous
workloads or server pools.

Solution
Use one of NGINX’s load-balancing methods, such as least connections, least time,
generic hash, random, or IP hash. This example sets the load-balancing algorithm for
the backend upstream pool to choose the server with the least amount of connections:

14 | Chapter 2: High-Performance Load Balancing

upstream backend {
 least_conn;
 server backend.example.com;
 server backend1.example.com;
}

All load-balancing algorithms, with the exception of generic hash, random, and least
time, are standalone directives, such as the preceding example. The parameters to
these directives are explained in the following discussion.

The next example uses the generic hash algorithm with the $remote_addr variable.
This example renders the same routing algorithm as IP hash; however, generic hash
works in the stream context, whereas IP hash is only available in the http context.
You can replace the variable used, or add more to alter the way the generic hash algo‐
rithm distributes load. The following is an example of an upstream block configured
to use the client’s IP address with the generic hash algorithm:

upstream backend {
 hash $remote_addr;
 server backend.example.com;
 server backend1.example.com;
}

Discussion
Not all requests or packets carry equal weight. Given this, round robin, or even
the weighted round robin used in previous examples, will not fit the need of all
applications or traffic flow. NGINX provides a number of load-balancing algorithms
that you can use to fit particular use cases. In addition to being able to choose these
load-balancing algorithms or methods, you can also configure them. The following
load-balancing methods, with the exception of IP hash, are available for upstream
HTTP, TCP, and UDP pools:

Round robin
This is the default load-balancing method, which distributes requests in the
order of the list of servers in the upstream pool. You can also take weight into
consideration for a weighted round robin, which you can use if the capacity of
the upstream servers varies. The higher the integer value for the weight, the more
favored the server will be in the round robin. The algorithm behind weight is
simply the statistical probability of a weighted average.

Least connections
This method balances load by proxying the current request to the upstream
server with the least number of open connections. Least connections, like round
robin, also takes weights into account when deciding which server to send the
connection to. The directive name is least_conn.

2.4 Load-Balancing Methods | 15

Least time
Available only in NGINX Plus, least time is akin to least connections in that it
proxies to the upstream server with the least number of current connections,
but favors the servers with the lowest average response times. This method is
one of the most sophisticated load-balancing algorithms and fits the needs of
highly performant web applications. This algorithm is a value-add over least con‐
nections because a small number of connections does not necessarily mean the
quickest response. When using this algorithm, it is important to take into con‐
sideration the statistical variance of services’ request times. Some requests may
naturally take more processing and thus have a longer request time, increasing
the range of the statistic. Long request times do not always mean a less perform‐
ant or overworked server. However, requests that require more processing may
be candidates for asynchronous workflows. A parameter of header or last_byte
must be specified for this directive. When header is specified, the time to receive
the response header is used. When last_byte is specified, the time to receive the
full response is used. If the inflight parameter is specified, incomplete requests
are also taken into account. The directive name is least_time.

Generic hash
The administrator defines a hash with the given text, variables of the request or
runtime, or both. NGINX distributes the load among the servers by producing
a hash for the current request and placing it against the upstream servers. This
method is very useful when you need more control over where requests are sent
or for determining which upstream server most likely will have the data cached.
Note that when a server is added or removed from the pool, the hashed requests
will be redistributed. This algorithm has an optional parameter, consistent, to
minimize the effect of redistribution. The directive name is hash.

Random
This method is used to instruct NGINX to select a random server from the
group, taking server weights into consideration. The optional two [method]
parameter directs NGINX to randomly select two servers and then use the
provided load-balancing method to balance between those two. By default the
least_conn method is used if two is passed without a method. The directive
name for random load balancing is random.

IP hash
This method works only for HTTP. IP hash uses the client IP address as the hash.
Slightly different from using the remote variable in a generic hash, this algorithm
uses the first three octets of an IPv4 address or the entire IPv6 address. This
method ensures that clients are proxied to the same upstream server as long as
that server is available, which is extremely helpful when the session state is of
concern and not handled by shared memory of the application. This method also

16 | Chapter 2: High-Performance Load Balancing

takes the weight parameter into consideration when distributing the hash. The
directive name is ip_hash.

2.5 Sticky Cookie with NGINX Plus
Problem
You need to bind a downstream client to an upstream server using NGINX Plus.

Solution
Use the sticky cookie directive to instruct NGINX Plus to create and track a cookie:

upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 sticky cookie
 affinity
 expires=1h
 domain=.example.com
 httponly
 secure
 path=/;
}

This configuration creates and tracks a cookie that ties a downstream client to
an upstream server. In this example, the cookie is named affinity, is set for
example.com, expires in an hour, cannot be consumed client-side, can be sent only
over HTTPS, and is valid for all paths.

Discussion
Using the cookie parameter on the sticky directive creates a cookie on the first
request that contains information about the upstream server. NGINX Plus tracks
this cookie, enabling it to continue directing subsequent requests to the same server.
The first positional parameter to the cookie parameter is the name of the cookie
to be created and tracked. Other parameters offer additional control, informing the
browser of the appropriate usage—like the expiry time, domain, path, and whether
the cookie can be consumed client-side or whether it can be passed over unsecure
protocols. Cookies are a part of the HTTP protocol, and therefore sticky cookie
only works in the http context.

2.5 Sticky Cookie with NGINX Plus | 17

2.6 Sticky Learn with NGINX Plus
Problem
You need to bind a downstream client to an upstream server by using an existing
cookie with NGINX Plus.

Solution
Use the sticky learn directive to discover and track cookies that are created by the
upstream application:

upstream backend {
 server backend1.example.com:8080;
 server backend2.example.com:8081;

 sticky learn
 create=$upstream_cookie_cookiename
 lookup=$cookie_cookiename
 zone=client_sessions:1m;
}

This example instructs NGINX to look for and track sessions by looking for a
cookie named COOKIENAME in response headers, and looking up existing sessions by
looking for the same cookie on request headers. This session affinity is stored in a
shared memory zone of one megabyte, which can track approximately 4,000 sessions.
The name of the cookie will always be application-specific. Commonly used cookie
names, such as jsessionid or phpsessionid, are typically defaults set within the
application or the application server configuration.

Discussion
When applications create their own session-state cookies, NGINX Plus can discover
them in request responses and track them. This type of cookie tracking is performed
when the sticky directive is provided: the learn parameter. Shared memory for
tracking cookies is specified with the zone parameter, with a name and size. NGINX
Plus is directed to look for cookies in the response from the upstream server via
specification of the create parameter, and it searches for prior registered server
affinity using the lookup parameter. The values of these parameters are variables
exposed by the HTTP module.

18 | Chapter 2: High-Performance Load Balancing

2.7 Sticky Routing with NGINX Plus
Problem
You need granular control over how your persistent sessions are routed to the
upstream server with NGINX Plus.

Solution
Use the sticky directive with the route parameter to use variables describing the
request to route:

map $cookie_jsessionid $route_cookie {
 ~.+\.(?P<route>\w+)$ $route;
}

map $request_uri $route_uri {
 ~jsessionid=.+\.(?P<route>\w+)$ $route;
}

upstream backend {
 server backend1.example.com route=a;
 server backend2.example.com route=b;

 sticky route $route_cookie $route_uri;
}

This example attempts to extract a Java session ID, first from a cookie by mapping
the value of the Java session ID cookie to a variable with the first map block, and
second by looking into the request URI for a parameter called jsessionid, mapping
the value to a variable using the second map block. The sticky directive with the
route parameter is passed any number of variables. The first nonzero or nonempty
value is used for the route. If a jsessionid cookie is used, the request is routed to
backend1; if a URI parameter is used, the request is routed to backend2. Although
this example is based on the Java common session ID, the same applies for other
session technology like phpsessionid, or any guaranteed unique identifier your
application generates for the session ID.

Discussion
Sometimes, utilizing a bit more granular control, you might want to direct traffic to
a particular server. The route parameter to the sticky directive is built to achieve
this goal. sticky route gives you better control, actual tracking, and stickiness, as
opposed to the generic hash load-balancing algorithm. The client is first routed to
an upstream server based on the route specified, and then subsequent requests will
carry the routing information in a cookie or the URI. sticky route takes a number

2.7 Sticky Routing with NGINX Plus | 19

of positional parameters that are evaluated. The first nonempty variable is used to
route to a server. map blocks can be used to selectively parse variables and save them
as other variables to be used in the routing. Essentially, the sticky route directive
creates a session within the NGINX Plus shared memory zone for tracking any client
session identifier you specify to the upstream server, consistently delivering requests
with this session identifier to the same upstream server as its original request.

2.8 Connection Draining with NGINX Plus
Problem
You need to gracefully remove servers for maintenance or other reasons, while still
serving sessions with NGINX Plus.

Solution
Use the drain parameter through the NGINX Plus API, described in more detail in
Chapter 5, to instruct NGINX to stop sending new connections that are not already
tracked:

$ curl -X POST -d '{"drain":true}' \
 'http://nginx.local/api/9/http/upstreams/backend/servers/0'

{
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":"10s",
 "slow_start":"0s",
 "route":"",
 "backup":false,
 "down":false,
 "drain":true
}

Discussion
When session state is stored locally to a server, connections and persistent sessions
must be drained before the server is removed from the pool. Draining connections
is the process of letting sessions to a server expire natively before removing the
server from the upstream pool. You can configure draining for a particular server by
adding the drain parameter to the server directive. When the drain parameter is
set, NGINX Plus stops sending new sessions to this server but allows current sessions
to continue being served for the length of their session. You can also toggle this

20 | Chapter 2: High-Performance Load Balancing

configuration by adding the drain parameter to an upstream server directive, then
reloading the NGINX Plus configuration.

2.9 Passive Health Checks
Problem
You need to passively check the health of upstream servers to ensure that they’re
successfully serving proxied traffic.

Solution
Use NGINX health checks with load balancing to ensure that only healthy upstream
servers are utilized:

upstream backend {
 server backend1.example.com:1234 max_fails=3 fail_timeout=3s;
 server backend2.example.com:1234 max_fails=3 fail_timeout=3s;
}

This configuration passively monitors upstream health by monitoring the response
of client requests directed to the upstream server. The example sets the max_fails
directive to three and fail_timeout to three seconds. These directive parameters
work the same way in both stream and HTTP servers.

Discussion
Passive health checking is available in NGINX Open Source, and it is configured by
using the same server parameters for HTTP, TCP, and UDP load balancing. Passive
monitoring watches for failed or timed-out connections as they pass through NGINX
as requested by a client. Passive health checks are enabled by default; the parameters
mentioned here allow you to tweak their behavior. The default max_fails value is
1, and the default fail_timeout value is 10s. Monitoring for health is important
on all types of load balancing, not only from a user-experience standpoint but also
for business continuity. NGINX passively monitors upstream HTTP, TCP, and UDP
servers to ensure that they’re healthy and performing.

See Also
HTTP Health Checks Admin Guide

TCP Health Checks Admin Guide

UDP Health Checks Admin Guide

2.9 Passive Health Checks | 21

https://oreil.ly/9xsNp
https://oreil.ly/_2MK5
https://oreil.ly/kEYQN

2.10 Active Health Checks with NGINX Plus
Problem
You need to actively check your upstream servers for health with NGINX Plus to
ensure that they’re ready to serve proxied traffic.

Solution
For HTTP, use the health_check directive in a location block:

http {
 server {
 # ...
 location / {
 proxy_pass http://backend;
 health_check interval=2s
 fails=2
 passes=5
 uri=/
 match=welcome;
 }
 }
 # status is 200, content type is "text/html",
 # and body contains "Welcome to nginx!"
 match welcome {
 status 200;
 header Content-Type = text/html;
 body ~ "Welcome to nginx!";
 }
}

This health-check configuration for HTTP servers checks the health of the upstream
servers by making an HTTP GET request to the URI “/” every two seconds. The
HTTP method can’t be defined for health checks; only GET requests are performed,
as other methods may change the state of backend systems. The upstream servers
must pass five consecutive health checks to be considered healthy. An upstream
server is considered unhealthy after failing two consecutive checks and is taken out
of the pool. The response from the upstream server must match the defined match
block, which defines the status code as 200, the header Content-Type value as 'text/
html', and the string "Welcome to nginx!" in the response body. The HTTP match
block has three directives: status, header, and body. All three of these directives have
comparison flags as well.

Stream health checks for TCP/UDP services are very similar:

stream {
 # ...
 server {

22 | Chapter 2: High-Performance Load Balancing

 listen 1234;
 proxy_pass stream_backend;
 health_check interval=10s
 passes=2
 fails=3;
 health_check_timeout 5s;
 }
 # ...
}

In this example, a TCP server is configured to listen on port 1234, and to proxy
to an upstream set of servers, for which it actively checks for health. The stream
health_check directive takes all the same parameters as in HTTP, with the exception
of uri, and the stream version has a parameter to switch the check protocol to udp.
In this example, the interval is set to 10 seconds, requires two passes to be considered
healthy, and requires three fails to be considered unhealthy. The active-stream health
check is also able to verify the response from the upstream server. The match block
for stream servers, however, has just two directives: send and expect. The send direc‐
tive is raw data to be sent, and expect is an exact response or a regular expression to
match.

Discussion
In NGINX Plus, passive or active health checks can be used to monitor the source
servers. These health checks can measure more than just the response code. In
NGINX Plus, active HTTP health checks monitor based on a number of acceptance
criteria of the response from the upstream server. You can configure active health-
check monitoring for how often upstream servers are checked, how many times a
server must pass this check to be considered healthy, how many times it can fail
before being deemed unhealthy, and what the expected result should be. For more
complex logic, a require directive for the match block enables the use of variables
whose value must not be empty or zero. The match parameter points to a match block
that defines the acceptance criteria for the response. The match block also defines the
data to send to the upstream server when used in the stream context for TCP/UDP.
These features enable NGINX to ensure that upstream servers are healthy at all times.

See Also
HTTP Health Checks Admin Guide

TCP Health Checks Admin Guide

UDP Health Checks Admin Guide

2.10 Active Health Checks with NGINX Plus | 23

https://oreil.ly/9xsNp
https://oreil.ly/_2MK5
https://oreil.ly/kEYQN

2.11 Slow Start with NGINX Plus
Problem
Your application needs to ramp up before taking on full production load.

Solution
Use the slow_start parameter on the server directive to gradually increase the
number of connections over a specified time as a server is reintroduced to the
upstream load-balancing pool:

upstream {
 zone backend 64k;

 server server1.example.com slow_start=20s;
 server server2.example.com slow_start=15s;
}

The server directive configurations will slowly ramp up traffic to the upstream
servers after they’re reintroduced to the pool. server1 will slowly ramp up its number
of connections over 20 seconds, and server2 will ramp up over 15 seconds.

Discussion
Slow start is the concept of slowly ramping up the number of requests proxied to
a server over a period of time. Slow start allows the application to warm up by
populating caches, initiating database connections without being overwhelmed by
connections as soon as it starts. This feature takes effect when a server that has failed
health checks begins to pass again and re-enters the load-balancing pool, and it is
only available in NGINX Plus. Slow start can’t be used with hash, IP hash, or random
load-balancing methods.

24 | Chapter 2: High-Performance Load Balancing

CHAPTER 3

Traffic Management

3.0 Introduction
NGINX is also classified as a web-traffic controller. You can use NGINX to intelli‐
gently route traffic and control flow based on many attributes. This chapter covers
NGINX’s ability to split client requests based on percentages; utilize the geographical
location of the clients; and control the flow of traffic in the form of rate, connection,
and bandwidth limiting. As you read through this chapter, keep in mind that you can
mix and match these features to enable countless possibilities.

3.1 A/B Testing
Problem
You need to split clients between two or more versions of a file or application to test
acceptance or engagement.

Solution
Use the split_clients module to direct a percentage of your clients to a different
upstream pool:

split_clients "${remote_addr}AAA" $variant {
 20.0% "backendv2";
 * "backendv1";
}

The split_clients directive hashes the string provided by you as the first parameter
and divides that hash by the percentages provided to map the value of a variable
provided as the second parameter. The addition of AAA to the first parameter is to

25

demonstrate that this is a concatenated string that can include many variables, as
mentioned in the generic hash load-balancing algorithm. The third parameter is an
object containing key-value pairs where the key is the percentage weight and the
value is the value to be assigned. The key can be either a percentage or an asterisk.
The asterisk denotes the rest of the whole after all percentages are taken. The value of
the $variant variable will be backendv2 for 20% of client IP addresses and backendv1
for the remaining 80%.

In this example, backendv1 and backendv2 represent upstream server pools and can
be used with the proxy_pass directive as such:

location / {
 proxy_pass http://$variant
}

Using the variable $variant, our traffic will be split between two different application
server pools.

To demonstrate the wide variety of uses split_clients can have, the following is an
example of splitting between two versions of a static site:

http {
 split_clients "${remote_addr}" $site_root_folder {
 33.3% "/var/www/sitev2/";
 * "/var/www/sitev1/";
 }
 server {
 listen 80 _;
 root $site_root_folder;
 location / {
 index index.html;
 }
 }
}

Discussion
This type of A/B testing is useful when testing different types of marketing and front‐
end features for conversion rates on ecommerce sites. It’s common for applications
to use a type of deployment called canary release. In this type of deployment, traffic
is slowly switched over to the new version by gradually increasing the percentage
of users being routed to the new version. Splitting your clients between different
versions of your application can be useful when rolling out new versions of code, to
limit the blast radius in the event of an error. Even more common is the blue-green
deployment style, where users are cut over to a new version and the old version is
still available while the deployment is validated. Whatever the reason for splitting
clients between two different application sets, NGINX makes this simple because of
the split_clients module.

26 | Chapter 3: Traffic Management

See Also
split_clients Module Documentation

3.2 Using the GeoIP Module and Database
Problem
You need to install the GeoIP database and enable its embedded variables within
NGINX to utilize the physical location of your clients in the NGINX log, proxied
requests, or request routing.

Solution
The official NGINX Open Source package repository, configured in Chapter 2 when
installing NGINX, provides a package named nginx-module-geoip. When using
the NGINX Plus package repository, this package is named nginx-plus-module-
geoip. NGINX Plus, however, offers a dynamic module for GeoIP2, which is an
updated module that works with NGINX stream as well as HTTP. The GeoIP2
module will be explained later in this section. The following examples show how to
install the dynamic NGINX GeoIP module package, as well as how to download the
GeoIP country and city databases. It’s important to note that the databases for the
original GeoIP module are no longer maintained.

NGINX Open Source with YUM package manager:

$ yum install nginx-module-geoip

NGINX Open Source with APT package manager:

$ apt install nginx-module-geoip

NGINX Plus with YUM package manager:

$ yum install nginx-plus-module-geoip

NGINX Plus with APT package manager:

$ apt install nginx-plus-module-geoip

Download the GeoIP country and city databases and unzip them:

$ mkdir /etc/nginx/geoip
$ cd /etc/nginx/geoip
$ wget "http://geolite.maxmind.com/\
 download/geoip/database/GeoLiteCountry/GeoIP.dat.gz"
$ gunzip GeoIP.dat.gz
$ wget "http://geolite.maxmind.com/\
 download/geoip/database/GeoLiteCity.dat.gz"
$ gunzip GeoLiteCity.dat.gz

3.2 Using the GeoIP Module and Database | 27

https://oreil.ly/Fn61k

This set of commands creates a geoip directory in the /etc/nginx directory, moves to
this new directory, and downloads and unzips the packages.

With the GeoIP database for countries and cities on the local disk, you can now
instruct the NGINX GeoIP module to use them to expose embedded variables based
on the client IP address:

 load_module modules/ngx_http_geoip_module.so;

 http {
 geoip_country /etc/nginx/geoip/GeoIP.dat;
 geoip_city /etc/nginx/geoip/GeoLiteCity.dat;
...
}

The load_module directive dynamically loads the module from its path on the filesys‐
tem. The load_module directive is only valid in the main context. The geoip_country
directive takes a path to the GeoIP.dat file containing the database that maps IP
addresses to country codes and is valid only in the http context.

The GeoIP2 module is available as a dynamic module and can be compiled at build
time of NGINX Open Source. Compiling NGINX Open Source with the GeoIP2
module is outside the scope of this book. The following material will explain how to
install the nginx-plus-module-geoip2 module.

Install the NGINX Plus dynamic module for GeoIP2 with APT package manager:

$ apt install nginx-plus-module-geoip2

Install the NGINX Plus dynamic module for GeoIP2 with YUM package manager:

$ yum install nginx-plus-module-geoip2

Load the dynamic module for GeoIP2:

load_module modules/ngx_http_geoip2_module.so;
load_module modules/ngx_stream_geoip2_module.so;

http {
 # ...
}

Download the free MaxMind GeoLite2 database (requires sign up). Then configure
NGINX to use the databases and expose Geo information through variables:

http {
 ...
 geoip2 /etc/maxmind-country.mmdb {
 auto_reload 5m;
 $geoip2_metadata_country_build metadata build_epoch;
 $geoip2_data_country_code default=US
 source=$variable_with_ip country iso_code;
 $geoip2_data_country_name country names en;

28 | Chapter 3: Traffic Management

https://oreil.ly/oWC8B
https://oreil.ly/q2VmA

 }

 geoip2 /etc/maxmind-city.mmdb {
 $geoip2_data_city_name default=London city names en;
 }

 fastcgi_param COUNTRY_CODE $geoip2_data_country_code;
 fastcgi_param COUNTRY_NAME $geoip2_data_country_name;
 fastcgi_param CITY_NAME $geoip2_data_city_name;

}

stream {
 ...
 geoip2 /etc/maxmind-country.mmdb {
 $geoip2_data_country_code default=US
 source=$remote_addr country iso_code;
 }
 ...
}

Discussion
To use this functionality, you must have the NGINX GeoIP or GeoIP2 module
installed and a local GeoIP country and city database. Installation and retrieval of
these prerequisites was demonstrated in this section.

In the original GeoIP module, geoip_country and geoip_city directives expose a
number of embedded variables available in this module. The geoip_country direc‐
tive enables variables that allow you to distinguish the country of origin of your
client. These variables include $geoip_country_code, $geoip_country_code3, and
$geoip_country_name. The country code variable returns the two-letter country
code, and the variable with a 3 at the end returns the three-letter country code. The
country name variable returns the full name of the country.

The geoip_city directive enables quite a few variables. The geoip_city directive
enables all the same variables as the geoip_country directive, just with differ‐
ent names, such as $geoip_city_country_code, $geoip_city_country_code3, and
$geoip_city_country_name. Other variables include $geoip_city, $geoip_latitude,
$geoip_longitude, $geoip_city_continent_code, and $geoip_postal_code, all of
which are descriptive of the value they return. $geoip_region and $geoip_region_
name describe the region, territory, state, province, federal land, and the like. Region
is the two-letter code, whereas region name is the full name. $geoip_area_code, only
valid in the US, returns the three-digit telephone area code.

When using the GeoIP2 module, the geoip2 directive exposes the same variables, but
the prefix of the variables is geoip2_data_ rather than geoip_. The geoip2 directive

3.2 Using the GeoIP Module and Database | 29

also configures the defaults, and the interval in which the database is reloaded from
MaxMind.

With these variables, you’re able to log information about your client. You could
optionally pass this information to your application as a header or variable, or use
NGINX to route your traffic in particular ways.

See Also
geoip Module Documentation

GeoIP Update GitHub

NGINX GeoIP2 Dynamic Module Documentation

Source Repository for GeoIP2 with Documentation on GitHub

3.3 Restricting Access Based on Country
Problem
You need to restrict access from particular countries for contractual or application
requirements.

Solution
Map the country codes you want to block or allow to a variable:

load_module modules/ngx_http_geoip2_module.so;
http {
 geoip2 /etc/maxmind-country.mmdb {
 auto_reload 5m;
 $geoip2_metadata_country_build metadata build_epoch;
 $geoip2_data_country_code default=US
 source=$variable_with_ip country iso_code;
 $geoip2_data_country_name country names en;
 }
 map $geoip2_data_country_code $country_access {
 "US" 0;
 default 1;
 }
 # ...
}

This mapping will set a new variable, $country_access, to 1 or 0. If the client IP
address originates from the US, the variable will be set to 0. For any other country, the
variable will be set to 1.

30 | Chapter 3: Traffic Management

https://oreil.ly/zleE0
https://oreil.ly/rJp_a
https://oreil.ly/VbINx
https://oreil.ly/N5Ajm

Now, within our server block, we’ll use an if statement to deny access to anyone not
originating from the US:

server {
 if ($country_access = '1') {
 return 403;
 }
 # ...
}

This if statement will evaluate True if the $country_access variable is set to 1. When
True, the server will return a 403 Unauthorized. Otherwise the server operates as
normal. So this if block is only there to deny access to people who are not from
the US.

Discussion
This is a short but simple example of how to only allow access from a couple of
countries. This example can be expounded on to fit your needs. You can utilize
this same practice to allow or block based on any of the embedded variables made
available from the geoip2 module.

3.4 Finding the Original Client
Problem
You need to find the original client IP address because there are proxies in front of
the NGINX server.

Solution
Use the geoip2_proxy directive to define your proxy IP address range and the
geoip_proxy_recursive directive to look for the original IP:

load_module "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 geoip2 /etc/maxmind-country.mmdb {
 auto_reload 5m;
 $geoip2_metadata_country_build metadata build_epoch;
 $geoip2_data_country_code default=US
 source=$variable_with_ip country iso_code;
 $geoip2_data_country_name country names en;
 }
 geoip2_proxy 10.0.16.0/26;
 geoip2_proxy_recursive on;
...
}

3.4 Finding the Original Client | 31

The geoip2_proxy directive defines a classless inter-domain routing (CIDR) range in
which our proxy servers live and instructs NGINX to utilize the X-Forwarded-For
header to find the client IP address. The geoip2_proxy_recursive directive instructs
NGINX to recursively look through the X-Forwarded-For header for the last client IP
known.

A header named Forwarded has become the standard header for
adding proxy information for proxied requests. The header used
by the NGINX GeoIP2 module is X-Forwarded-For and cannot be
configured otherwise at the time of writing. While X-Forwarded-
For is not an official standard, it is still very widely used, accepted,
and set by most proxies.

Discussion
You may find that if you’re using a proxy in front of NGINX, NGINX will pick up the
proxy’s IP address rather than the client’s. In this case, you can use the geoip2_proxy
directive to instruct NGINX to use the X-Forwarded-For header when connections
are opened from a given range. The geoip2_proxy directive takes an address or a
CIDR range. When there are multiple proxies passing traffic in front of NGINX,
you can use the geoip2_proxy_recursive directive to recursively search through
X-Forwarded-For addresses to find the originating client. You will want to use some‐
thing like this when utilizing load balancers, such as Amazon Web Services Elastic
Load Balancing (AWS ELB), Google Cloud Platform’s load balancer, or Microsoft
Azure’s load balancer, in front of NGINX.

3.5 Limiting Connections
Problem
You need to limit the number of connections based on a predefined key, such as the
client’s IP address.

Solution
Construct a shared memory zone to hold connection metrics, and use the
limit_conn directive to limit open connections:

32 | Chapter 3: Traffic Management

http {
 limit_conn_zone $binary_remote_addr zone=limitbyaddr:10m;
 limit_conn_status 429;
 # ...
 server {
 # ...
 limit_conn limitbyaddr 40;
 # ...
 }
}

This configuration creates a shared memory zone named limitbyaddr. The pre‐
defined key used is the client’s IP address in binary form. The size of the
shared memory zone is set to 10 MB. The limit_conn directive takes two param‐
eters: a limit_conn_zone name and the number of connections allowed. The
limit_conn_status sets the response when the connections are limited to a status
of 429, indicating too many requests. The limit_conn and limit_conn_status direc‐
tives are valid in the http, server, and location contexts.

Discussion
Limiting the number of connections based on a key can be used to defend against
abuse and share your resources fairly across all your clients. It is important to be
cautious with your predefined key. Using an IP address, as we do in the previous
example, could be dangerous if many users are on the same network that originates
from the same IP, such as when behind a network address translation (NAT). The
entire group of clients will be limited. The limit_conn_zone directive is only valid in
the http context. You can utilize any number of variables available to NGINX within
the http context in order to build a string by which to limit. Utilizing a variable
that can identify the user at the application level, such as a session cookie, may be a
cleaner solution depending on the use case. The limit_conn_status defaults to 503
service unavailable. You may find it preferable to use a 429, as the service is available,
and 500-level responses indicate server error, whereas 400-level responses indicate
client error.

Testing limitations can be tricky. It’s often hard to simulate live traffic in an alter‐
nate environment for testing. In this case, you can set the limit_conn_dry_run
directive to on, then use the variable $limit_conn_status in your access log. The
$limit_conn_status variable will evaluate to either PASSED, DELAYED, REJECTED,
DELAYED_DRY_RUN, or REJECTED_DRY_RUN. With dry run enabled, you’ll be able to
analyze the logs of live traffic and tweak your limits as needed before rejecting
requests over the limit, providing you with assurance that your limit configuration is
correct.

3.5 Limiting Connections | 33

3.6 Limiting Rate
Problem
You need to limit the rate of requests by a predefined key, such as the client’s IP
address.

Solution
Utilize the rate-limiting module to limit the rate of requests:

http {
 limit_req_zone $binary_remote_addr
 zone=limitbyaddr:10m rate=3r/s;
 limit_req_status 429;
 # ...
 server {
 # ...
 limit_req zone=limitbyaddr;
 # ...
 }
}

This example configuration creates a shared memory zone named limitbyaddr. The
predefined key used is the client’s IP address in binary form. The size of the shared
memory zone is set to 10 MB. The zone sets the rate with a keyword argument.
The limit_req directive takes a required keyword argument: zone. zone instructs the
directive on which shared memory request–limit zone to use. Requests that exceed
the expressed rate are returned a 429 HTTP code, as defined by the limit_req_
status directive. It’s advised to set a status in the 400-level range, as the default is a
503, implying a problem with the server, when the issue is actually with the client.

Use optional keyword arguments to the limit_req directive to enable two-stage rate
limiting:

server {
 location / {
 limit_req zone=limitbyaddr burst=12 delay=9;
 }
}

In some cases, a client will need to make many requests all at once, and then it will
reduce its rate for a period of time before making more. You can use the keyword
argument burst to allow the client to exceed its rate limit but not have requests
rejected. The rate-exceeded requests will have a delay in processing to match the rate
limit up to the value configured. A set of keyword arguments alter this behavior:
delay and nodelay. The nodelay argument does not take a value, and simply allows
the client to consume the burstable value all at once; however, all requests will be

34 | Chapter 3: Traffic Management

rejected until enough time has passed to satisfy the rate limit. In this example, if we
used nodelay, the client could consume 12 requests in the first second, but would
have to wait four seconds after the initial request to make another. The delay key‐
word argument defines how many requests can be made up front without throttling.
In this case, the client can make nine requests up front with no delay, the next three
will be throttled, and any more within a four-second period will be rejected.

Discussion
The rate-limiting module is very powerful for protecting against abusive rapid
requests, while still providing a quality service to everyone. There are many reasons
to limit rate of request, one being security. You can deny a brute-force attack by
putting a very strict limit on your login page. You can set a reasonable limit on all
requests, thereby disabling the plans of malicious users who might try to deny service
to your application or to waste resources.

The configuration of the rate-limiting module is much like the connection-limiting
module described in Recipe 3.5, and many of the same concerns apply. You can
specify the rate at which requests are limited in requests per second or requests per
minute. When the rate limit is reached, the incident is logged. There’s also a directive
not included in the example, limit_req_log_level, which defaults to error, but can
be set to info, notice, or warn. In NGINX Plus, rate limiting is now cluster-aware
(see Recipe 12.5 for a zone sync example).

Testing limitations can be tricky. It’s often hard to simulate live traffic in an alter‐
native environment for testing. In this case, you can set the limit_conn_dry_run
directive to on, then use the variable $limit_conn_status in your access
log. The $limit_conn_status variable will evaluate to PASSED, REJECTED, or
REJECTED_DRY_RUN. With dry run enabled, you’ll be able to analyze the logs of live
traffic and tweak your limits as needed before rejecting requests over the limit,
providing you with assurance that your limit configuration is correct.

3.7 Limiting Bandwidth
Problem
You need to limit download bandwidth per client for your assets.

Solution
Utilize NGINX’s limit_rate and limit_rate_after directives to limit the band‐
width of response to a client:

3.7 Limiting Bandwidth | 35

location /download/ {
 limit_rate_after 10m;
 limit_rate 1m;
}

The configuration of this location block specifies that for URIs with the prefix down‐
load, the rate at which the response will be served to the client will be limited after 10
MB to a rate of 1 MB per second. The bandwidth limit is per connection, so you may
want to institute a connection limit as well as a bandwidth limit where applicable.

Discussion
Limiting the bandwidth for particular connections enables NGINX to share its
upload bandwidth across all of the clients in a manner you specify. These two
directives do it all: limit_rate_after and limit_rate. The limit_rate_after
directive can be set in almost any context: http, server, location, and if when
the if is within a location. The limit_rate directive is applicable in the same con‐
texts as limit_rate_after; however, it can alternatively be set by a variable named
$limit_rate.

The limit_rate_after directive specifies that the connection should not be rate
limited until after a specified amount of data has been transferred. The limit_rate
directive specifies the rate limit for a given context in bytes per second by default.
However, you can specify m for megabytes or g for gigabytes. Both directives default
to a value of 0. The value 0 means not to limit download rates at all. This module
allows you to programmatically change the rate limit of clients.

36 | Chapter 3: Traffic Management

CHAPTER 4

Massively Scalable Content Caching

4.0 Introduction
Caching accelerates content serving by storing responses to be served again in the
future. By serving from its cache, NGINX reduces load on upstream servers by
offloading them of expensive, repetitive work. Caching increases performance and
reduces load, meaning you can serve faster with fewer resources. Caching also
reduces the time and bandwidth it takes to serve resources.

The scaling and distribution of caching servers in strategic locations can have a
dramatic effect on user experience. It’s optimal to host content close to the consumer
for the best performance. You can also cache your content close to your users. This is
the pattern of content delivery networks, or CDNs. With NGINX you’re able to cache
your content wherever you can place an NGINX server, effectively enabling you to
create your own CDN. With NGINX caching, you’re also able to passively cache
and serve cached responses in the event of an upstream failure. Caching features are
only available within the http context. This chapter will cover NGINX’s caching and
content delivery capabilities.

4.1 Caching Zones
Problem
You need to cache content and need to define where the cache is stored.

Solution
Use the proxy_cache_path directive to define shared memory-cache zones and a
location for the content:

37

proxy_cache_path /var/nginx/cache
 keys_zone=main_content:60m
 levels=1:2
 inactive=3h
 max_size=20g
 min_free=500m;
proxy_cache CACHE;

The cache definition example creates a directory for cached responses on the filesys‐
tem at /var/nginx/cache and creates a shared memory space named main_content
with 60 MB of memory. This example sets the directory structure levels, defines the
eviction of cached responses after they have not been requested in three hours, and
defines a maximum size of the cache of 20 GB. The min_free parameter instructs
NGINX on how much disk space to keep free of the max_size before evicting cached
resources. The proxy_cache directive informs a particular context to use the cache
zone. The proxy_cache_path is valid in the http context, and the proxy_cache
directive is valid in the http, server, and location contexts.

Discussion
To configure caching in NGINX, it’s necessary to declare a path and zone to be
used. A cache zone in NGINX is created with the proxy_cache_path directive. The
proxy_cache_path directive designates a location to store the cached information
and a shared memory space to store active keys and response metadata. Optional
parameters to this directive provide more control over how the cache is maintained
and accessed.

The levels parameter defines how the directory structure is created. The value is
a colon-separated list of numbers that defines the length of successive subdirectory
names. Deeper structures help to avoid too many cached files appearing in a single
directory. NGINX then stores the result in the file structure provided, using the cache
key as a filepath and breaking up directories based on the levels value.

The inactive parameter allows for control over the length of time a cache item will
be hosted after its last use. The size of the cache is also configurable with the use of
the max_size parameter. Other parameters relate to the cache-loading process, which
loads the cache keys into the shared memory zone from the files cached on disk,
along with many other options. For more information about the proxy_cache_path
directive, find a link to the documentation in the following “See Also” section.

See Also
proxy_cache_path Documentation

38 | Chapter 4: Massively Scalable Content Caching

https://oreil.ly/R9l_z

1 Any combination of text or variables exposed to NGINX can be used to form a cache key. A list of variables is
available in NGINX.

4.2 Caching Hash Keys
Problem
You need to control how your content is cached and retrieved.

Solution
Use the proxy_cache_key directive along with variables to define what constitutes a
cache hit or miss:

proxy_cache_key "$host$request_uri $cookie_user";

This cache hash key will instruct NGINX to cache pages based on the host and URI
being requested, as well as a cookie that defines the user. With this you can cache
dynamic pages without serving content that was generated for a different user.

Discussion
The default proxy_cache_key, which will fit most use cases, is "$scheme$proxy_
host$request_uri". The variables used include the scheme (http, or https); the
proxy_host, where the request is being sent; and the request URI. All together, this
reflects the URL that NGINX is proxying the request to. You may find that there
are many other factors that define a unique request per application—such as request
arguments, headers, session identifiers, and so on—to which you’ll want to create your
own hash key.1

Selecting a good hash key is very important and should be thought through with
understanding of the application. Selecting a cache key for static content is typically
pretty straightforward; using the hostname and URI will suffice. Selecting a cache
key for fairly dynamic content like pages for a dashboard application requires more
knowledge around how users interact with the application and the degree of variance
between user experiences. When caching dynamic content, using session identifiers
such as cookies or JWT tokens is especially useful. Due to security concerns, you may
not want to present cached data from one user to another without fully understand‐
ing the context. The proxy_cache_key directive configures the string to be hashed for
the cache key. The proxy_cache_key can be set in the context of http, server, and
location blocks, providing flexible control on how requests are cached.

4.2 Caching Hash Keys | 39

https://oreil.ly/1ulD5

4.3 Cache Locking
Problem
You want to control how NGINX handles concurrent requests for a resource for
which the cache is being updated.

Solution
Use the proxy_cache_lock directive to ensure only one request is able to write to the
cache at a time, where subsequent requests will wait for the response to be written to
the cache and served from there:

proxy_cache_lock on;
proxy_cache_lock_age 10s;
proxy_cache_lock_timeout 3s;

Discussion
We don’t want to proxy requests for which earlier requests for the same content are
still in flight and are currently being written to the cache. The proxy_cache_lock
directive instructs NGINX to hold requests destined for a cached resource that
is currently being populated. The proxied request that is populating the cache is
limited in the amount of time it has before another request attempts to populate
the resource, defined by the proxy_cache_lock_age directive, which defaults to five
seconds. NGINX can also allow requests that have been waiting a specified amount
of time to pass through to the proxied server, which will not attempt to populate the
cache, by use of the proxy_cache_lock_timeout directive, which also defaults to five
seconds. You can think of proxy_cache_lock_age and proxy_cache_lock_timeout
as “You’re taking too long, I’ll populate the cache for you,” and “You’re taking too long
for me to wait, I’m going to get what I need and let you populate the cache in your
own time,” respectively.

4.4 Use Stale Cache
Problem
You want to send expired cache entries when the upstream sever is unavailable.

Solution
Use the proxy_cache_use_stale directive with a parameter value defining for which
cases NGINX should use stale cache:

40 | Chapter 4: Massively Scalable Content Caching

proxy_cache_use_stale error timeout invalid_header updating
 http_500 http_502 http_503 http_504
 http_403 http_404 http_429;

Discussion
NGINX’s ability to serve stale cached resources while your application is not return‐
ing correctly can really save the day. This feature can give the illusion of a working
web service to the end user while the backend may be unreachable. Serving from
stale cache also reduces the stress on your backend servers when there are issues,
which can in turn provide some breathing room for the engineering team to debug
the issue.

The configuration tells NGINX to use stale cached resources when the upstream
request times out, returns an invalid_header error, or returns 400- and 500-level
response codes. The error and updating parameters are a little special. The error
parameter permits use of stale cache when an upstream server cannot be selected.
The updating parameter tells NGINX to use stale cached resources while the cache is
updating with new content.

See Also
NGINX Use Stale Cache Directive Documentation

4.5 Cache Bypass
Problem
You need the ability to sometimes bypass caching.

Solution
Use the proxy_cache_bypass directive with a nonempty or nonzero value. One way
to do this dynamically is with a variable set to anything other than an empty string or
0 within a location block that you do not want cached:

proxy_cache_bypass $http_cache_bypass;

The configuration tells NGINX to bypass the cache if the HTTP request header
named cache_bypass is set to any value that is not 0. This example uses a header as
the variable to determine if caching should be bypassed—the client would need to
specifically set this header for their request.

4.5 Cache Bypass | 41

https://oreil.ly/GBHRS

Discussion
There are a number of scenarios that demand that the request is not cached. For this,
NGINX exposes a proxy_cache_bypass directive so that when the value is nonempty
or nonzero, the request will be sent to an upstream server rather than be pulled from
the cache. Different needs and scenarios for bypassing the cache will be dictated by
your application’s use case. Techniques for bypassing the cache can be as simple as
using a request or response header, or as intricate as multiple map blocks working
together.

You may want to bypass the cache for many reasons, such as troubleshooting or
debugging. Reproducing issues can be hard if you’re consistently pulling cached pages
or if your cache key is specific to a user identifier. Having the ability to bypass the
cache is vital. Options include, but are not limited to, bypassing the cache when a
particular cookie, header, or request argument is set. You can also turn off the cache
completely for a given context, such as a location block, by setting proxy_cache
off;.

4.6 Cache Purging with NGINX Plus
Problem
You need to invalidate an object from the cache.

Solution
Use the purge feature of NGINX Plus, the proxy_cache_purge directive, and a non‐
empty or zero-value variable:

map $request_method $purge_method {
 PURGE 1;
 default 0;
}
server {
 # ...
 location / {
 # ...
 proxy_cache_purge $purge_method;
 }
}

In this example, the cache for a particular object will be purged if it’s requested with
the PURGE method. The following is a curl example of purging the cache of a file
named main.js:

$ curl -X PURGE http://www.example.com/main.js

42 | Chapter 4: Massively Scalable Content Caching

Discussion
A common way to handle static files is to put a hash of the file in the filename. This
ensures that as you roll out new code and content, your CDN recognizes it as a new
file because the URI has changed. However, this does not exactly work for dynamic
content to which you’ve set cache keys that don’t fit this model. In every caching
scenario, you must have a way to purge the cache.

NGINX Plus provides a simple method for purging cached responses. The
proxy_cache_purge directive, when passed a zero or nonempty value, will purge
the cached items matching the request. A simple way to set up purging is by mapping
the request method for PURGE. However, you may want to use this in conjunction with
the geoip module or simple authentication to ensure that not just anyone can purge
your precious cache items. NGINX has also allowed for the use of *, which will purge
cache items that match a common URI prefix. To use wildcards, you will need to
configure your proxy_cache_path directive with the purger=on argument.

See Also
NGINX Cache Purge Example

4.7 Cache Slicing
Problem
You need to increase caching efficiency by segmenting the resource into fragments.

Solution
Use the NGINX slice directive and its embedded variables to divide the cache result
into fragments:

proxy_cache_path /tmp/mycache keys_zone=mycache:10m;
server {
 # ...
 proxy_cache mycache;
 slice 1m;
 proxy_cache_key $host$uriis_argsargs$slice_range;
 proxy_set_header Range $slice_range;
 proxy_http_version 1.1;
 proxy_cache_valid 200 206 1h;

 location / {
 proxy_pass http://origin:80;
 }
}

4.7 Cache Slicing | 43

https://oreil.ly/lwmEc

Discussion
This configuration defines a cache zone and enables it for the server. The slice
directive is then used to instruct NGINX to slice the response into 1 MB file
segments. The cached resources are stored according to the proxy_cache_key direc‐
tive. Note the use of the embedded variable named slice_range. That same variable
is used as a header when making the request to the origin, and that request HTTP
version is upgraded to HTTP/1.1 because 1.0 does not support byte-range requests.
The cache validity is set for response codes of 200 or 206 for one hour, and then the
location and origins are defined.

The cache slice module was developed for delivery of HTML5 video, which uses
byte-range requests to pseudostream content to the browser. By default, NGINX is
able to serve byte-range requests from its cache. If a request for a byte range is made
for uncached content, NGINX requests the entire file from the origin. When you use
the cache slice module, NGINX requests only the necessary segments from the origin.
Range requests that are larger than the slice size, including the entire file, trigger
subrequests for each of the required segments, and then those segments are cached.
When all of the segments are cached, the response is assembled and sent to the client,
enabling NGINX to more efficiently cache and serve content requested in ranges.

The cache slice module should be used only on large resources that do not change.
NGINX validates the ETag each time it receives a segment from the origin. If the
ETag on the origin changes, NGINX aborts the cache population of the segment
because the cache is no longer valid. If the content does change and the file is smaller,
or your origin can handle load spikes during the cache fill process, it’s better to use
the cache_lock directive described in Recipe 4.3. Learn more about cache-slicing
techniques in the blog listed in the “See Also” section.

See Also
“Smart and Efficient Byte-Range Caching with NGINX & NGINX Plus”

44 | Chapter 4: Massively Scalable Content Caching

https://oreil.ly/6Nkxs

CHAPTER 5

Programmability and Automation

5.0 Introduction
Programmability refers to the ability to interact with something through program‐
ming. The API for NGINX Plus provides just that: the ability to interact with the
configuration and behavior of NGINX Plus through an HTTP interface. This API
provides the ability to reconfigure NGINX Plus by adding or removing upstream
servers through HTTP requests. The key-value store feature in NGINX Plus enables
another level of dynamic configuration—you can utilize HTTP calls to inject infor‐
mation that NGINX Plus can use to route or control traffic dynamically. This chapter
will touch on the NGINX Plus API and the key-value store module exposed by that
same API.

Configuration management tools automate the installation and configuration of
servers, which is an invaluable utility in the age of the cloud. Engineers of large-scale
web applications no longer need to configure servers by hand; instead, they can
use one of the many configuration management tools available. With these tools,
engineers only need to write configurations and code once to produce many servers
with the same configuration in a repeatable, testable, and modular fashion. This
chapter covers a few of the most popular configuration management tools available
and how to use them to install NGINX and template a base configuration. These
examples are extremely basic but demonstrate how to get an NGINX server started
with each platform.

5.1 NGINX Plus API
Problem
You have a dynamic environment and need to reconfigure NGINX Plus on the fly.

45

Solution
Configure the NGINX Plus API to enable adding and removing servers through API
calls:

upstream backend {
 zone http_backend 64k;
}
server {
 # ...
 # enable /api/ location with appropriate access
 # control in order to make use of NGINX Plus API
 location /api {
 # Set write=off for read only mode, recommended
 api write=on;
 # Directives limiting access to the API
 # See chapter 7
 }

 # enable NGINX Plus Dashboard; requires /api/ location to be
 # enabled and appropriate access control for remote access
 location = /dashboard.html {
 root /usr/share/nginx/html;
 }
}

This NGINX Plus configuration creates an upstream server with a shared memory
zone, enables the API in the /api location block, and provides a location for the
NGINX Plus dashboard.

You can utilize the API to add servers when they come online:

$ curl -X POST -d '{"server":"172.17.0.3"}' \
 'http://nginx.local/api/9/http/upstreams/backend/servers/'
{
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":"10s",
 "slow_start":"0s",
 "route":"",
 "backup":false,
 "down":false
}

The curl call in this example makes a request to NGINX Plus to add a new server
to the backend upstream configuration. The HTTP method is a POST, a JSON
object is passed as the body, and a JSON response is returned. The JSON response
shows the server object configuration—note that a new id was generated, and other
configuration settings were set to default values.

46 | Chapter 5: Programmability and Automation

The NGINX Plus API is RESTful; therefore, there are parameters in the request URI.

The format of the URI is as follows:

/api/{version}/http/upstreams/{httpUpstreamName}/servers/

You can utilize the NGINX Plus API to list the servers in the upstream pool:

$ curl 'http://nginx.local/api/9/http/upstreams/backend/servers/'
[
 {
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":"10s",
 "slow_start":"0s",
 "route":"",
 "backup":false,
 "down":false
 }
]

The curl call in this example makes a request to NGINX Plus to list all of the servers
in the upstream pool named backend. Currently, we have only the one server that
we added in the previous curl call to the API. The request will return an upstream
server object that contains all of the configurable options for a server.

Use the NGINX Plus API to drain connections from an upstream server, preparing it
for a graceful removal from the upstream pool. You can find details about connection
draining in Recipe 2.8, but here is the API request to drain connections:

$ curl -X PATCH -d '{"drain":true}' \
 'http://nginx.local/api/9/http/upstreams/backend/servers/0'
{
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":"10s",
 "slow_start":"0s",
 "route":"",
 "backup":false,
 "down":false,
 "drain":true
}

In this curl, we specify that the request method is PATCH, pass a JSON body instruct‐
ing it to drain connections from the server, and specify the server ID by appending it

5.1 NGINX Plus API | 47

to the URI. We found the ID of the server by listing the servers in the upstream pool
in the previous curl command.

NGINX Plus will begin to drain the connections. This process can take as long as the
session lengths of the application. To check how many active connections are being
served by the server you’ve begun to drain, use the following call and look for the
active attribute of the server being drained:

$ curl 'http://nginx.local/api/9/http/upstreams/backend'
{
 "zone" : "http_backend",
 "keepalive" : 0,
 "peers" : [
 {
 "backup" : false,
 "id" : 0,
 "unavail" : 0,
 "name" : "172.17.0.3",
 "requests" : 0,
 "received" : 0,
 "state" : "draining",
 "server" : "172.17.0.3:80",
 "active" : 0,
 "weight" : 1,
 "fails" : 0,
 "sent" : 0,
 "responses" : {
 "4xx" : 0,
 "total" : 0,
 "3xx" : 0,
 "5xx" : 0,
 "2xx" : 0,
 "1xx" : 0
 },
 "health_checks" : {
 "checks" : 0,
 "unhealthy" : 0,
 "fails" : 0
 },
 "downtime" : 0
 }
],
 "zombies" : 0
}

After all connections have drained, utilize the NGINX Plus API to remove the server
from the upstream pool entirely:

$ curl -X DELETE \
 'http://nginx.local/api/9/http/upstreams/backend/servers/0'
[]

48 | Chapter 5: Programmability and Automation

The curl command makes a DELETE method request to the same URI used to update
the server’s state. The DELETE method instructs NGINX to remove the server. This
API call returns all of the servers, and their IDs, that are still left in the pool. Because
we started with an empty pool, added only one server through the API, drained it,
and then removed it, we now have an empty pool again.

Discussion
The NGINX Plus–exclusive API enables dynamic application servers to add them‐
selves to and remove themselves from the NGINX configuration on the fly. As servers
come online, they can register themselves to the pool, and NGINX will start sending
load to the newly added servers. When a server needs to be removed, the server
can request NGINX Plus to drain its connections, and then remove itself from the
upstream pool before it’s shut down. This enables the infrastructure, through some
automation, to scale in and out without human intervention.

See Also
NGINX Plus REST API Documentation

5.2 Using the Key-Value Store with NGINX Plus
Problem
You need NGINX Plus to make dynamic traffic management decisions based on
input from applications.

Solution
This section will use the example of a dynamic blocklist as a traffic management
decision.

Set up the cluster-aware key-value store and API, and then add keys and values:

keyval_zone zone=blocklist:1M;
keyval $remote_addr $blocked zone=blocklist;

server {
 # ...
 location / {
 if ($blocked) {
 return 403 'Forbidden';
 }
 return 200 'OK';
 }
}
server {

5.2 Using the Key-Value Store with NGINX Plus | 49

https://oreil.ly/BsdN5

 # ...
 # Directives limiting access to the API
 # See chapter 6
 location /api {
 api write=on;
 }
}

This NGINX Plus configuration uses the keyval_zone directive to build a key-value
store shared memory zone named blocklist and sets a memory limit of 1 MB.
The keyval directive then maps the value of the key, matching the first parameter
$remote_addr to a new variable named $blocked from the zone. This new variable is
then used to determine whether NGINX Plus should serve the request or return a 403
Forbidden code.

After starting the NGINX Plus server with this configuration, you can curl the local
machine and expect to receive a 200 OK response:

$ curl 'http://127.0.0.1/'
OK

Now add the local machine’s IP address to the key-value store with a value of 1:

$ curl -X POST -d '{"127.0.0.1":"1"}' \
 'http://127.0.0.1/api/9/http/keyvals/blocklist'

This curl command submits an HTTP POST request with a JSON object containing
a key-value object to be submitted to the blocklist shared memory zone. The
key-value store API URI is formatted as follows:

/api/{version}/http/keyvals/{httpKeyvalZoneName}

The local machine’s IP address is now added to the key-value zone named blocklist
with a value of 1. In the next request, NGINX Plus looks up the $remote_addr in the
key-value zone, finds the entry, and maps the value to the variable $blocked. This
variable is then evaluated in the if statement. When the variable has a value, the if
evaluates to True and NGINX Plus returns the 403 Forbidden return code:

$ curl 'http://127.0.0.1/'
Forbidden

You can update or delete the key by making a PATCH method request:

$ curl -X PATCH -d '{"127.0.0.1":null}' \
 'http://127.0.0.1/api/9/http/keyvals/blocklist'

NGINX Plus deletes the key if the value is null, and requests will again return 200 OK.

50 | Chapter 5: Programmability and Automation

Discussion
The key-value store, an NGINX Plus–exclusive feature, enables applications to inject
information into NGINX Plus. In the example provided, the $remote_addr variable
is used to create a dynamic blocklist. You can populate the key-value store with any
key that NGINX Plus might have as a variable—a session cookie, for example—and
provide NGINX Plus an external value. In NGINX Plus R16, the key-value store
became cluster-aware, meaning that you have to provide your key-value update to
only one NGINX Plus server, and all of them will receive the information.

In NGINX Plus R19, the key-value store enabled a type parameter, which enables
indexing for specific types of keys. By default, the type is of value string, where ip
and prefix are also options. The string type does not build an index and all key
requests must be exact matches, whereas prefix will allow for partial key matches
provided the prefix of the key is a match. An ip type enables the use of CIDR
notation. In our example, if we had specified the type=ip as a parameter to our zone,
we could have provided an entire CIDR range to block, such as 192.168.0.0/16 to
block the entire RFC 1918 private range block, or 127.0.0.1/32 for localhost, which
would have rendered the same effect as demonstrated in the example.

See Also
“Dynamic Bandwidth Limits Using the NGINX Plus Key-Value Store”

5.3 Using the njs Module to Expose JavaScript
Functionality Within NGINX
Problem
You need NGINX to perform custom logic on requests or responses.

Solution
Enable the use of JavaScript by installing the NGINX JavaScript (njs) module for
NGINX. The following package installation steps assume that you’ve added the offi‐
cial NGINX repositories for your Linux distribution, as demonstrated in Chapter 1.

5.3 Using the njs Module to Expose JavaScript Functionality Within NGINX | 51

https://oreil.ly/dzX6k

NGINX Open Source with APT package manager:

$ apt install nginx-module-njs

NGINX Plus with APT package manager:

$ apt install nginx-plus-module-njs

NGINX Open Source with YUM package manager:

$ yum install nginx-module-njs

NGINX Plus with YUM package manager:

$ yum install nginx-plus-module-njs

If you do not already have a directory for JavaScript files within the NGINX configu‐
ration, create one:

$ mkdir -p /etc/nginx/njs

Create a JavaScript file named /etc/nginx/njs/jwt.js with the following contents:

function jwt(data) {
 var parts = data.split('.').slice(0,2)
 .map(v=>Buffer.from(v, 'base64url').toString())
 .map(JSON.parse);
 return { headers:parts[0], payload: parts[1] };
}
function jwt_payload_subject(r) {
 return jwt(r.headersIn.Authorization.slice(7)).payload.sub;
}
function jwt_payload_issuer(r) {
 return jwt(r.headersIn.Authorization.slice(7)).payload.iss;
}
export default {jwt_payload_subject, jwt_payload_issuer}

The provided JavaScript example defines a function that decodes JSON Web Tokens
(JWTs). Further, two functions are defined that use the JWT decoder to return
specific keys within the JWT. Those functions are exported to be made available
to NGINX. These functions return common keys found in a JWT: the subject and
issuer. The .slice(7) portion of the code accounts for removing the first seven
characters of the Authorization header value. With the advent of JWT the type value
is Bearer. Bearer is six characters, and we also need to remove the space delimiter,
which is why we slice the first seven characters. There are some authentication
services that do not provide a type, such as AWS Cognito, because such services alter
the slice count or remove it entirely so that the jwt function receives only the token
value.

Within the core NGINX configuration, load the njs module. Import and use the
JavaScript in the http block:

52 | Chapter 5: Programmability and Automation

load_module /etc/nginx/modules/ngx_http_js_module.so;

http {
 js_path "/etc/nginx/njs/";
 js_import main from jwt.js;
 js_set $jwt_payload_subject main.jwt_payload_subject;
 js_set $jwt_payload_issuer main.jwt_payload_issuer;
 ...
}

The provided NGINX configuration dynamically loads the njs module and imports
the JavaScript file that we previously defined. NGINX directives are used to set
NGINX variables to the returned values of the JavaScript functions.

Define a server that returns the variables set by JavaScript:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 location / {
 return 200 "$jwt_payload_subject $jwt_payload_issuer";
 }
}

The provided configuration will produce a server that returns the subject and issuer
values provided by the client through the Authorization header. These values are
decoded by the defined JavaScript code.

To validate that the code works, you will make a request to the server with a given
JWT. The following is a JSON format of the JWT, which you can use to verify that the
code works:

{
 "iss": "nginx",
 "sub": "alice",
 "foo": 123,
 "bar": "qq",
 "zyx": false
}

Make a request to the server with a given JWT to verify that the JavaScript code runs
and returns the correct values:

$ curl 'http://localhost/' -H \
"Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1\
NiIsImV4cCI6MTU4NDcyMzA4NX0.eyJpc3MiOiJuZ2lueCIsInN1YiI6Im\
FsaWNlIiwiZm9vIjoxMjMsImJhciI6InFxIiwie\
nl4IjpmYWxzZX0.Kftl23Rvv9dIso1RuZ8uHaJ83BkKmMtTwch09rJtwgk"

alice nginx

5.3 Using the njs Module to Expose JavaScript Functionality Within NGINX | 53

Discussion
NGINX has provided a module that exposes standard JavaScript functionality during
its processing of requests and responses. This module enables you to embed business
logic into your proxy layer. JavaScript was chosen because of its volume of usage.

The njs module provides the ability to inject logic during requests coming into
NGINX, as well as responses coming from NGINX. You’re able to validate and
manipulate requests as they pass through the proxy, as demonstrated in this section
by decoding the JWT. The njs module is also able to manipulate responses from
upstream services by streaming the response data through the JavaScript logic. njs
additionally enables stream services to become application-layer aware; you can find
more information about this in the “See Also” section.

See Also
njs Scripting Language Documentation

NGINX Plus njs Module Installation

5.4 Extending NGINX with a Common
Programming Language
Problem
You need NGINX to perform some custom extension using a common programming
language.

Solution
Before preparing to write a custom NGINX module from scratch in C, first evaluate
if one of the other programming language modules will fit your use case. The C pro‐
gramming language is extremely powerful and performant. There are, however, many
other languages available as modules that may enable the customization required.
NGINX has introduced NGINX JavaScript (njs), which integrates the power of Java‐
Script into the NGINX configuration by simply enabling a module. Lua and Perl
modules are also available. With these language modules, you either import a file
including code or define a block of code directly within the configuration.

To use Lua, install the Lua module and the following NGINX configuration to define
a Lua script inline:

load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {}

54 | Chapter 5: Programmability and Automation

https://oreil.ly/5NMAN
https://oreil.ly/OHtC_

http {
 server {
 listen 8080;
 location / {
 default_type text/html;
 content_by_lua_block {
 ngx.say("hello, world")
 }
 }
 }
}

The Lua module provides its own NGINX API through an object defined by the
module named ngx. Like the request object in njs, the ngx object has attributes and
methods to describe the request and manipulate the response.

With the Perl module installed, this example will use Perl to set an NGINX variable
from the runtime environment:

load_module modules/ngx_http_perl_module.so;

events {}

http {
 perl_set $app_endpoint 'sub { return $ENV{"APP_DNS_ENDPOINT"}; }';
 server {
 listen 8080;
 location / {
 proxy_pass http://$app_endpoint
 }
 }
 }
}

The preceding example demonstrates that these language modules expose more
functionality than just returning a response. The perl_set directive sets an NGINX
variable to data returned from a Perl script. This limited example simply returns
a system environment variable, which is used as the endpoint in which to proxy
requests.

Discussion
The capabilities enabled by the extendability of NGINX are endless. NGINX is
extendable with custom code through C modules, which can be compiled into
NGINX when building from source, or dynamically loaded within the configuration.
Existing modules that expose the functionality and syntax of JavaScript (njs), Lua,
and Perl are already available. In many cases, unless distributing custom NGINX
functionality to others, these preexisting modules can suffice. Many scripts built for
these modules already exist in the open source community.

5.4 Extending NGINX with a Common Programming Language | 55

This solution demonstrated basic usage of the Lua and Perl scripting languages
available in NGINX. Whether looking to respond, set a variable, make a subrequest,
or define a complex rewrite, these NGINX modules provide the capability.

See Also
NGINX Plus Lua Module Installation

NGINX Plus Perl Module Installation

NGINX Lua Module Documentation

NGINX Perl Module Documentation

5.5 Installing with Ansible
Problem
You need to install and configure NGINX with Ansible to manage NGINX configura‐
tions as code and conform with the rest of your Ansible configurations.

Solution
Install the Ansible NGINX collection from Ansible Galaxy:

ansible-galaxy collection install nginxinc.nginx_core

Create a playbook that uses the NGINX collection and nginx role to install NGINX:

- hosts: all
 collections:
 - nginxinc.nginx_core
 tasks:
 - name: Install NGINX
 include_role:
 name: nginx

Add a task to the playbook to use the built-in nginx_config role and provide variable
overrides to the default template to fit your use case:

- name: Configure NGINX
 ansible.builtin.include_role:
 name: nginx_config
 vars:
 nginx_config_http_template_enable: true
 nginx_config_http_template:
 - template_file: http/default.conf.j2
 deployment_location: /etc/nginx/conf.d/default.conf
 config:
 servers:

56 | Chapter 5: Programmability and Automation

https://oreil.ly/WUpBI
https://oreil.ly/_ym5V
https://oreil.ly/trDKl
https://oreil.ly/V3dh0

 - core:
 listen:
 - port: 80
 server_name: localhost
 log:
 access:
 - path: /var/log/nginx/access.log
 format: main
 sub_filter:
 sub_filters:
 - string: server_hostname
 replacement: $hostname
 once: false
 locations:
 - location: /
 core:
 root: /usr/share/nginx/html
 index: index.html

 nginx_config_html_demo_template_enable: true
 nginx_config_html_demo_template:
 - template_file: www/index.html.j2
 deployment_location: /usr/share/nginx/html/index.html
 web_server_name: Ansible NGINX collection

Discussion
Ansible is a widely used and powerful configuration management tool written in
Python. The configuration of tasks is in YAML, and you use the Jinja2 templating
language for file templating. Ansible offers a server named Ansible Automation Plat‐
form on a subscription model. However, it’s commonly used from local machines, to
build servers directly to the client, or in a standalone model. Ansible will bulk Secure
Shell (SSH) into servers and run the configuration. Much like other configuration
management tools, there’s a large community of public roles. Ansible calls this the
Ansible Galaxy. You can find very sophisticated roles to utilize in your playbooks.

This solution used a collection of public roles, maintained by F5, Inc., to install
NGINX and produce a sample configuration. The configuration used in this exam‐
ple templates an NGINX demo HTML file and places it at /usr/share/nginx/html/
index.html. An NGINX configuration file is also templated to produce a server
block listening on localhost:80, with a single location block configured to serve
the demo file. The provided NGINX configuration templates are extremely compre‐
hensive; however, the nginx_config role allows you to provide your own templates
for complete control while taking advantage of the prebuilt and maintained Ansible
configuration. F5, Inc. also maintains an NGINX App Protect role that can be used
for installing and configuring the NGINX App Protect module for WAF and DoS.

5.5 Installing with Ansible | 57

See Also
NGINX-Provided Ansible Collection

Ansible Documentation

5.6 Installing with Chef
Problem
You need to install and configure NGINX with Chef to manage NGINX configura‐
tions as code and conform with the rest of your Chef configurations.

Solution
Install the NGINX cookbook, maintained by the Sous Chefs, from the Chef
Supermarket:

$ knife supermarket install nginx

This cookbook is resource-based, which means it provides Chef resources for you
to use in your own cookbook. Create a cookbook for your NGINX use case. This
cookbook will include the NGINX cookbook installed from the Supermarket as a
dependency. Once the dependency is in place you can use the resources provided.
Create a recipe for installing NGINX:

nginx_install 'nginx' do
 source 'repo'
end

When source is set to repo, NGINX is installed from F5, Inc.–maintained reposito‐
ries, which provide the most up-to-date versions.

Use the nginx_config resource within a recipe to override core NGINX
configurations:

nginx_config 'nginx' do
 default_site_enabled true
 keepalive_timeout 65
 worker_processes 'auto'
 action :create
 notifies :reload, 'nginx_service[nginx]', :delayed
end

Use the nginx_site resource within a recipe to configure an NGINX server block:

nginx_site 'test_site' do

 variables(
 'server' => {
 'listen' => ['*:80'],

58 | Chapter 5: Programmability and Automation

https://oreil.ly/dtgVz
https://oreil.ly/co2rw

 'server_name' => ['test.example.com'],
 'access_log' => '/var/log/nginx/test_site.access.log',
 'locations' => {
 '/' => {
 'root' => '/var/www/nginx-default',
 'index' => 'index.html index.htm',
 },
 },
 }
)

 action :create
 notifies :reload, 'nginx_service[nginx]', :delayed
end

Discussion
Chef is a configuration management tool written in Ruby. It can be run in a cli‐
ent/server relationship or a solo configuration. Chef has a very large community
called the Supermarket with many public cookbooks. Public cookbooks from the
Supermarket can be installed and maintained via a command-line utility called Knife.
Chef is extremely capable, and what this recipe demonstrated is just a small sample.

The public NGINX cookbook in the Supermarket is extremely flexible and provides
the options to easily install NGINX from a package manager or from source, and the
ability to compile and install many different modules as well as template out the basic
configurations. In this section we installed NGINX from the Sous Chefs–maintained
repositories, and configured a server block to host an HTML file as a basic example.
You can provide your own templates to the nginx_site resource to take further
control of your NGINX configuration.

See Also
Chef Documentation

Chef Supermarket for NGINX

5.7 Automating Configurations with Consul Templating
Problem
You need to automate your NGINX configuration to respond to changes in your
environment through the use of Consul.

5.7 Automating Configurations with Consul Templating | 59

https://oreil.ly/dXOBX
https://oreil.ly/xxu5z

Solution
Use the consul-template daemon and a template file to template out the NGINX
configuration file of your choice:

upstream backend { {{range service "app.backend"}}
 server {{.Address}};{{end}}
}

This example is a Consul template file that templates an upstream configuration
block. The template will loop through nodes in Consul identified as app.backend. For
every node in Consul, the template will produce a server directive with that node’s IP
address.

The consul-template daemon is run via the command line and can be used to reload
NGINX every time the configuration file is templated with a change:

$ consul-template -consul-addr consul.example.internal -template \
 ./upstream.template:/etc/nginx/conf.d/upstream.conf:"nginx -s reload"

This command instructs the consul-template daemon to connect to a Consul
cluster at consul.example.internal and to use a file named upstream.template in the
current working directory to template the file and output the generated contents
to /etc/nginx/conf.d/upstream.conf, then to reload NGINX every time the templated
file changes. The -template flag takes a string of the template file, the output loca‐
tion, and the command to run after the templating process takes place. These three
variables are separated by colons. If the command being run has spaces, make sure to
wrap it in double quotes. The -consul flag tells the daemon what Consul cluster to
connect to.

Discussion
Consul is a powerful service discovery tool and configuration store. Consul stores
information about nodes as well as key-value pairs in a directory-like structure and
allows for RESTful API interaction. Consul also provides a DNS interface on each
client, allowing for domain name lookups of nodes connected to the cluster. A
separate project that utilizes Consul clusters is the consul-template daemon; this
tool templates files in response to changes in Consul nodes, services, or key-value
pairs. This makes Consul a very powerful choice for automating NGINX. With
consul-template you can also instruct the daemon to run a command after a change
to the template takes place. With this, you can reload the NGINX configuration
and allow your NGINX configuration to come alive along with your environment.
With Consul and consul-template, your NGINX configuration can be as dynamic
as your environment. Infrastructure, configuration, and application information is
centrally stored, and consul-template can subscribe and retemplate as necessary in

60 | Chapter 5: Programmability and Automation

an event-based manner. With this technology, NGINX can dynamically reconfigure
in reaction to the addition and removal of servers, services, application versions, etc.

See Also
Load Balancing with NGINX Plus’ Service Discovery Integration

Load Balancing with NGINX and Consul Template

Consul

Service Configuration with Consul Template

consul-template GitHub

5.7 Automating Configurations with Consul Templating | 61

https://oreil.ly/nWBBR
https://oreil.ly/qQ9k8
https://oreil.ly/va7t7
https://oreil.ly/g-OAb
https://oreil.ly/dfHMm

CHAPTER 6

Authentication

6.0 Introduction
NGINX is able to authenticate clients. Authenticating client requests with NGINX
offloads work and provides the ability to stop unauthenticated requests from reaching
your application servers. Modules available for NGINX Open Source include basic
authentication and authentication subrequests. The NGINX Plus–exclusive module
for verifying JSON Web Tokens (JWTs) enables integration with third-party authenti‐
cation providers that use the authentication standard OpenID Connect. This chapter
will cover the various ways to use NGINX in conjunction with authentication to
secure resources.

6.1 HTTP Basic Authentication
Problem
You need to secure your application or content via HTTP basic authentication.

Solution
Generate a file in the following format, where the password is encrypted or hashed
with one of the allowed formats:

comment
name1:password1
name2:password2:comment
name3:password3

The username is the first field, the password the second field, and the delimiter is
a colon. There is an optional third field, which you can use to comment on each
user. NGINX can understand a few different formats for passwords, one of which is

63

a password encrypted with the C function crypt(). This function is exposed to the
command line by the openssl passwd command. With openssl installed, you can
create encrypted password strings by using the following command:

$ openssl passwd MyPassword1234

The output will be a string that NGINX can use in your password file.

Use the auth_basic and auth_basic_user_file directives within your NGINX con‐
figuration to enable basic authentication:

location / {
 auth_basic "Private site";
 auth_basic_user_file conf.d/passwd;
}

You can use the auth_basic directives in the http, server, or location contexts.
The auth_basic directive takes a string parameter, which is displayed on the
basic authentication pop-up window when an unauthenticated user arrives. The
auth_basic_user_file specifies a path to the user file.

To test your configuration, you can use curl with the -u or --user flag to build an
Authorization header for the request:

$ curl --user myuser:MyPassword1234 https://localhost

Discussion
You can generate basic authentication passwords a few ways, and in a few different
formats, with varying degrees of security. The htpasswd command from Apache
can also generate passwords. Both the openssl and htpasswd commands can gener‐
ate passwords with the apr1 algorithm, which NGINX can also understand. The
password can also be in the salted SHA-1 format that Lightweight Directory Access
Protocol (LDAP) and Dovecot use. NGINX supports more formats and hashing
algorithms; however, many of them are considered insecure because they can easily
be defeated by brute-force attacks.

You can use basic authentication to protect the context of the entire NGINX
host, specific virtual servers, or even just specific location blocks. Basic authenti‐
cation won’t replace user authentication for web applications, but it can help keep
private information secure. Under the hood, basic authentication is done by the
server returning a 401 Unauthorized HTTP code with the response header WWW-
Authenticate. This header will have a value of Basic realm="your string". This
response causes the browser to prompt for a username and password. The username
and password are concatenated and delimited with a colon, then base64-encoded,
and then sent in a request header named Authorization. The Authorization request
header will specify a Basic and user:password encoded string. The server decodes

64 | Chapter 6: Authentication

the header and verifies against the provided auth_basic_user_file. Because the
username and password string is merely base64-encoded, it’s recommended to use
HTTPS with basic authentication because otherwise, user credentials are sent in
plaintext over the internet.

6.2 Authentication Subrequests
Problem
You have a third-party authentication system for which you would like requests
authenticated.

Solution
Use the http_auth_request_module to make a request to the authentication service
to verify identity before serving the request:

location /private/ {
 auth_request /auth;
 auth_request_set $auth_status $upstream_status;
}

location = /auth {
 internal;
 proxy_pass http://auth-server;
 proxy_pass_request_body off;
 proxy_set_header Content-Length "";
 proxy_set_header X-Original-URI $request_uri;
}

The auth_request directive takes a URI parameter that must be a local internal loca‐
tion. The auth_request_set directive allows you to set variables from the authentica‐
tion subrequest.

Discussion
The http_auth_request_module enables authentication on every request handled by
the NGINX server. The module will use a subrequest to determine if the request
is authorized to proceed. A subrequest is when NGINX passes the request to an
alternate internal location and observes its response before routing the request to
its destination. The /auth location block passes the original request, including the
body and headers, to the authentication server. The HTTP status code of the subre‐
quest is what determines whether or not access is granted. If the subrequest returns
with an HTTP 200 status code, the authentication is successful and the request is
fulfilled. If the subrequest returns HTTP 401 or 403, the same will be returned for the
original request.

6.2 Authentication Subrequests | 65

If your authentication service does not request the request body, you can drop the
request body with the proxy_pass_request_body directive, as demonstrated. This
practice will reduce the request size and time. Because the response body is discarded,
the Content-Length header must be set to an empty string. If your authentication
service needs to know the URI being accessed by the request, you’ll want to put that
value in a custom header that your authentication service checks and verifies. If there
are things you do want to keep from the subrequest to the authentication service, like
response headers or other information, you can use the auth_request_set directive
to make new variables out of response data.

6.3 Validating JWTs with NGINX Plus
Problem
You need to validate a JWT before the request is handled with NGINX Plus.

Solution
Use NGINX Plus’s HTTP JWT authentication module to validate the token signature
and embed JWT claims and headers as NGINX variables:

location /api/ {
 auth_jwt "api";
 auth_jwt_key_file conf/keys.json;
}

This configuration enables validation of JWTs for this location. The auth_jwt direc‐
tive is passed a string, which is used as the authentication realm. The auth_jwt
configuration takes an optional token parameter of a variable that holds the JWT.
By default, the Authentication header is used per the JWT standard. The auth_jwt
directive can also be used to cancel the effects of required JWT authentication from
inherited configurations. To turn off authentication, use the auth_jwt directive and
pass no parameters. To cancel inherited authentication requirements, pass the off
keyword to the auth_jwt directive with nothing else. The auth_jwt_key_file takes a
single parameter. This parameter is the path to the key file in standard JSON Web Key
(JWK) format.

In NGINX Plus R29, a module was added to protect against denial of service attacks
by unsigned JWTs when used in conjunction with rate limiting. This module is
named nginx_http_internal_redirect_module. The module reorders the check
for the rate limit to be before the JWT check, strengthening protection against
bad actors. Consider the following example and its use of the internal_redirect
directive:

66 | Chapter 6: Authentication

limit_req_zone $jwt_claim_sub zone=jwt_sub:10m rate=1r/s;

server {
 location / {
 auth_jwt "realm";
 auth_jwt_key_file key.jwk;

 internal_redirect @rate_limited;
 }

 location @rate_limited {
 internal;

 limit_req zone=jwt_sub burst=10;
 proxy_pass http://backend;
 }
}

Discussion
NGINX Plus is able to validate the JSON web-signature type of token, as opposed
to the JSON web-encryption type, where the entire token is encrypted. NGINX Plus
is able to validate signatures that are signed with the HS256, RS256, and ES256
algorithms. Having NGINX Plus validate the token can save the time and resources
needed to make a subrequest to an authentication service. NGINX Plus deciphers
the JWT header and payload, and captures the standard headers and claims into
embedded variables for your use. The auth_jwt directive can be used in the http,
server, location, and limit_except contexts. This section also demonstrated the
use of NGINX Plus’ internal_redirect module that protects against an unsigned
JWT denial of service attack; find more about this module in the “See Also” section.

See Also
RFC Standard Documentation of JSON Web Signature

RFC Standard Documentation of JSON Web Algorithms

RFC Standard Documentation of JSON Web Token

NGINX Plus JWT Authentication

“Authenticating API Clients with JWT and NGINX Plus”

NGINX internal_redirect Module

6.3 Validating JWTs with NGINX Plus | 67

https://oreil.ly/N2llP
https://oreil.ly/1PV1N
https://oreil.ly/gBlUC
https://oreil.ly/AdJGW
https://oreil.ly/rHM0B
https://oreil.ly/wH70m

6.4 Creating JSON Web Keys
Problem
You need a JSON Web Key (JWK) for NGINX Plus to use.

Solution
NGINX Plus utilizes the JWK format as specified in the RFC standard. This standard
allows for an array of key objects within the JWK file.

The following is an example of what the key file may look like:

{"keys":
 [
 {
 "kty":"oct",
 "kid":"0001",
 "k":"OctetSequenceKeyValue"

 },
 {

 "kty":"EC",
 "kid":"0002"
 "crv":"P-256",
 "x": "XCoordinateValue",
 "y": "YCoordinateValue",
 "d": "PrivateExponent",
 "use": "sig"
 },
 {
 "kty":"RSA",

 "kid":"0003"
 "n": "Modulus",
 "e": "Exponent",
 "d": "PrivateExponent"
 }
]
}

The JWK file shown demonstrates the three initial types of keys noted in the RFC
standard. The format of these keys is also part of the RFC standard. The kty attribute
is the key type. This file shows three key types: the Octet Sequence (oct), the Elliptic
Curve (EC), and the RSA type. The kid attribute is the key ID. Other attributes
to these keys are specified in the standard for that type of key. Look to the RFC
documentation of these standards for more information.

68 | Chapter 6: Authentication

Discussion
There are numerous libraries available in many different languages to generate the
JWK. It’s recommended to create a key service that is the central JWK authority
to create and rotate your JWKs at a regular interval. For enhanced security, it’s
recommended to make your JWKs as secure as your SSL/TLS certifications. Secure
your key file with proper user and group permissions. Keeping them in memory on
your host is best practice. You can do so by creating an in-memory filesystem like
ramfs. Rotating keys at a regular interval is also important; you may opt to create a
key service that creates public and private keys and offers them to the application and
NGINX via an API.

See Also
RFC Standard Documentation of JSON Web Key

6.5 Authenticate Users via Existing OpenID
Connect SSO with NGINX Plus
Problem
You want to integrate NGINX Plus with an OpenID Connect (OIDC) identity
provider.

Solution
This solution consists of a number of configuration aspects and a bit of NGINX
JavaScript (njs) code. The identity provider (IdP) must support OpenID Connect 1.0.
NGINX Plus will act as a relaying party of your OIDC in an authorization code flow.

F5, Inc. maintains a public GitHub repository containing configuration and code as
a reference implementation of OIDC integration with NGINX Plus. The link to the
repository in the “See Also” section has up-to-date instructions on how to set up the
reference implementation with your own IdP.

Discussion
This solution simply linked to a reference implementation to ensure that you, the
reader, have the most up-to-date solution. The reference provided configures NGINX
Plus as a relaying party to an authorization code flow for OpenID Connect 1.0. When
unauthenticated requests for protected resources are made to NGINX Plus in this
configuration, NGINX Plus first redirects the request to the IdP. The IdP takes the
client through its own login flow and returns the client to NGINX Plus with an authen‐
tication code. NGINX Plus then communicates directly with the IdP to exchange the

6.5 Authenticate Users via Existing OpenID Connect SSO with NGINX Plus | 69

https://oreil.ly/BrV8u

authentication code for a set of ID tokens. These tokens are validated using JWTs
and stored in NGINX Plus’s key-value store. By using the key-value store, the tokens
are made available to all NGINX Plus nodes in a highly available (HA) configuration.
During this process, NGINX Plus generates a session cookie for the client that is
used as the key to look up the token in the key-value store. The client is then served
a redirect with the cookie to the initial requested resource. Subsequent requests are
validated by using the cookie to look up the ID token in NGINX Plus’s key-value store.

This capability enables integration with most major identity providers, including
CA Single Sign‑On (formerly SiteMinder), ForgeRock OpenAM, Keycloak, Okta,
OneLogin, and Ping Identity. OIDC as a standard is extremely relevant in authentica‐
tion—the aforementioned identity providers are only a subset of the integrations that
are possible.

See Also
“Authenticating Users to Existing Applications with OpenID Connect and NGINX
Plus”

OpenID Connect

NGINX OpenID Connect GitHub

Access Token Support for OIDC Connect

6.6 Validate JSON Web Tokens (JWT) with NGINX Plus
Problem
You want to validate JSON Web Tokens with NGINX Plus.

Solution
Use the JWT module that comes with NGINX Plus to secure a location or server,
and instruct the auth_jwt directive to use $cookie_auth_token as the token to be
validated:

 location /private/ {
 auth_jwt "Google Oauth" token=$cookie_auth_token;
 auth_jwt_key_file /etc/nginx/google_certs.jwk;
 }

This configuration directs NGINX Plus to secure the /private/ URI path with JWT
validation. Google OAuth 2.0 OpenID Connect uses the cookie auth_token rather than
the default bearer token. Thus, you must instruct NGINX to look for the token in
this cookie rather than in the NGINX Plus default location. The auth_jwt_key_file
location is set to an arbitrary path, which is a step that we cover in Recipe 6.7.

70 | Chapter 6: Authentication

https://oreil.ly/6GHY2
https://oreil.ly/6GHY2
https://oreil.ly/su-wB
https://oreil.ly/sX86J
https://oreil.ly/GA9Qc

Discussion
This configuration demonstrates how you can validate a Google OAuth 2.0 OpenID
Connect JWT with NGINX Plus. The NGINX Plus JWT authentication module for
HTTP is able to validate any JWT that adheres to the RFC for JSON Web Signature
specification, instantly enabling any SSO authority that utilizes JWTs to be validated
at the NGINX Plus layer. The OpenID 1.0 protocol is a layer on top of the OAuth
2.0 authentication protocol that adds identity, enabling the use of JWTs to prove the
identity of the user sending the request. With the signature of the token, NGINX Plus
can validate that the token has not been modified since it was signed. In this way,
Google is using an asynchronous signing method and makes it possible to distribute
public JWKs while keeping its private JWK secret.

See Also
“Authenticating API Clients with JWT and NGINX Plus”

6.7 Automatically Obtaining and Caching JSON
Web Key Sets with NGINX Plus
Problem
You want NGINX Plus to automatically request the JSON Web Key Set (JWKS) from
a provider and cache it.

Solution
Utilize a cache zone and the auth_jwt_key_request directive to automatically keep
your key up-to-date:

proxy_cache_path /data/nginx/cache levels=1 keys_zone=foo:10m;

server {
 # ...

 location / {
 auth_jwt "closed site";
 auth_jwt_key_request /jwks_uri;
 }

 location = /jwks_uri {
 internal;
 proxy_cache foo;
 proxy_pass https://idp.example.com/keys;
 }
}

6.7 Automatically Obtaining and Caching JSON Web Key Sets with NGINX Plus | 71

https://oreil.ly/5Yzjb

In this example, the auth_jwt_key_request directive instructs NGINX Plus to
retrieve the JWKS from an internal subrequest. The subrequest is directed
to /jwks_uri, which will proxy the request to an identity provider. The request is
cached for a default of 10 minutes to limit overhead.

Discussion
In NGINX Plus R17, the auth_jwt_key_request directive was introduced. This fea‐
ture enables the NGINX Plus server to dynamically update its JWKS when a request
is made. A subrequest method is used to fetch the JWKS, which means the location
that the directive points to must be local to the NGINX Plus server. In the example,
the subrequest location was locked down to ensure that only internal NGINX Plus
requests would be served. A cache was also used to ensure the JWKS retrieval request
is only made as often as necessary and does not overload the identity provider.
The auth_jwt_key_request directive is valid in the http, server, location, and
limit_except contexts.

See Also
“Authenticating API Clients with JWT and NGINX Plus”

NGINX Plus “Faster JWT Validation with JSON Web Key Set Caching”

6.8 Configuring NGINX Plus as a Service Provider
for SAML Authentication
Problem
You want to integrate NGINX Plus with a SAML identity provider (IdP) to protect
resources.

Solution
This solution utilizes the NGINX Plus key-value store, and therefore is only applica‐
ble to NGINX Plus. The solution also uses the NGINX JavaScript (njs) module. Start
by installing njs.

NGINX Plus with APT package manager:

$ apt install nginx-plus-module-njs

NGINX Plus with YUM package manager:

$ yum install nginx-plus-module-njs

72 | Chapter 6: Authentication

https://oreil.ly/5Yzjb
https://oreil.ly/3sMch

The preceding will install njs as a dynamic module. You will need to instruct NGINX
Plus to load the module by adding the following to the nginx.conf configuration:

load_module modules/ngx_http_js_module.so;

Download, unzip, and move the SAML JavaScript and NGINX Plus configuration
files into place to activate this feature:

$ wget https://github.com/nginxinc/nginx-saml/archive/refs/heads/main.zip \
 -O nginx-saml-main.zip
$ unzip nginx-saml-main.zip
$ mv nginx-saml-main/* /etc/nginx/conf.d/

The NGINX Plus SAML solution does not yet parse standard SAML XML configura‐
tion files. You will need to update the configuration files downloaded in the prior step
to integrate with your system. The following is a description of each file and a note
about what needs to be updated:

saml_sp_configuration.conf
Contains the primary configuration for one or more service providers (SPs) and
IdPs in map{} blocks. Use the mapping functionality to configure more than one
SP or IdP based on the $host variable.

• Modify all of the map blocks that render variables prefixed with $saml_sp_ to
match your SP configuration.

• Modify all of the map blocks that render variables prefixed with $saml_idp_
to match your IdP configuration.

• Modify the URI defined in the map block that renders the $saml_log
out_redirect variable to specify an unprotected resource to be displayed
after requesting the /logout location.

• If NGINX Plus is deployed behind another proxy or load balancer, modify
the mapping for the $redirect_base and $proto variables to define how to
obtain the original protocol and port number.

frontend.conf
An example reverse proxy configuration that uses the SAML solution to protect
resources by importing the saml_sp.server_conf file.

• Replicate the include conf.d/saml_sp.server_conf; within your server
configuration.

• Use the error_page directive to initiate the SAML SP flow when a request•
is unauthorized. Place the following in location blocks that are to be
protected:

6.8 Configuring NGINX Plus as a Service Provider for SAML Authentication | 73

error_page 401 = @do_samlsp_flow;
if ($saml_access_granted != "1") {
 return 401;
}

• Set a header on the upstream request with the authenticated username:•
proxy_set_header username: $saml_name_id;

• Optionally update the log level by updating the level parameter passed to
the error_log directive.

saml_sp.server_conf
The NGINX configuration for handling IdP responses.

• Changes are not typically necessary in this file.
• For optimization, modify the client_body_buffer_size directive to match

the maximum size of IdP response (post body).

saml_sp.js
The JavaScript code for performing the SAML authentication.

• No changes are required.

Discussion
This solution employs the NGINX JavaScript module in tandem with the NGINX
Plus key-value store module to enable NGINX as a SAML service provider (SP) to
protect resources via Single Sign-On. The NGINX team at F5, Inc. has provided the
JavaScript code in the form of a public repository on GitHub, which needs to be
installed into your configuration and enabled. The configuration of endpoints and
keys, as well as other SAML configurations, are provided to the JavaScript code by a
series of map blocks, which allows for the configuration of multiple SPs or IdPs based
on the hostname of the request being handled.

Once the SP and IdP are configured, you’re able to include the saml_sp.server_conf
into your server config, and use the error_page directive to initiate an SP flow with
the IdP when NGINX Plus does not have a session saved for the user. The SP flow will
direct the user to the IdP to utilize an existing session or login, and upon success the
user will be redirected to NGINX Plus with a SAML response that will be validated by
NGINX Plus and stored in the key-value store. The key to the SAML response will be
returned to the client in the form of a cookie to be used on subsequent requests, and
finally, the client is directed back to the initially requested resource.

The solution also supports SAML Single Logout (SLO), which allows users to be
logged out of all SPs and IdPs with a single action. This action can be SP-initiated
or IdP-initiated. The SP-initiated logout starts by NGINX Plus sending a LogoutRe‐
quest message to the IdP. The IdP then terminates the user’s session and sends a

74 | Chapter 6: Authentication

LogoutResponse message back to NGINX Plus, which will in turn remove the value
stored in the key-value store for this user session.

When the logout is initiated by the IdP, the IdP is responsible for contacting NGINX
Plus as an SP and initiating the logout process by sending a LogoutRequest to the
registered Logout URL. When this process is performed, NGINX Plus will drop the
value from its key-value store associated with the user session and send a LogoutRes‐
ponse message back to the IdP.

The SLO functionality can be disabled in the event the IdP does not support it, or you
do not wish for the NGINX Plus SP to allow its use. To disable SLO, set the variable
map configuration for $saml_idp_slo_url to be an empty string.

See Also
SAML SSO Support for NGINX Plus

6.8 Configuring NGINX Plus as a Service Provider for SAML Authentication | 75

https://oreil.ly/P2ae9

CHAPTER 7

Security Controls

7.0 Introduction
Security is done in layers, and there must be multiple layers to your security model for
it to be truly hardened. In this chapter, we go through many different ways to secure
your web applications with NGINX. You can use many of these security methods in
conjunction with one another to help harden security.

You might notice that this chapter does not touch upon the ModSecurity 3.0 NGINX
module, which turns NGINX into a web application firewall (WAF). To learn more
about the WAF capabilities, download the ModSecurity 3.0 and NGINX: Quick Start
Guide.

Please note, the NGINX ModSecurity WAF for NGINX Plus is transitioning to
End-of-Life (EoL) effective March 31, 2024. For more information, please read the
“F5 NGINX ModSecurity WAF Is Transitioning to End-of-Life” blog post.

7.1 Access Based on IP Address
Problem
You need to control access based on the IP address of the client.

Solution
Use the HTTP or stream access module to control access to protected resources:

location /admin/ {
 deny 10.0.0.1;
 allow 10.0.0.0/20;
 allow 2001:0db8::/32;

77

https://oreil.ly/SULeY
https://oreil.ly/SULeY
https://oreil.ly/hMbSF

 deny all;
}

The given location block allows access from any IPv4 address in 10.0.0.0/20
except 10.0.0.1, allows access from IPv6 addresses in the 2001:0db8::/32 subnet,
and returns a 403 for requests originating from any other address. The allow and
deny directives are valid within the http, server, and location contexts, as well as in
the stream and server contexts for TCP/UDP. Rules are checked in sequence until a
match is found for the remote address.

Discussion
Protecting valuable resources and services on the internet must be done in layers.
NGINX functionality provides the ability to be one of those layers. The deny directive
blocks access to a given context, whereas the allow directive can be used to allow
access to subsets of the blocked addresses. You can use IP addresses, IPv4 or IPv6,
classless inter-domain routing (CIDR) block ranges, the keyword all, and a Unix
socket. Typically, when protecting a resource, one might allow a block of internal IP
addresses and deny access from all.

7.2 Allowing Cross-Origin Resource Sharing
Problem
You’re serving resources from another domain and need to allow cross-origin
resource sharing (CORS) to enable browsers to utilize these resources.

Solution
Alter headers based on the request method to enable CORS:

map $request_method $cors_method {
 OPTIONS 11;
 GET 1;
 POST 1;
 default 0;
}
server {
 # ...
 location / {
 if ($cors_method ~ '1') {
 add_header 'Access-Control-Allow-Methods'
 'GET,POST,OPTIONS';
 add_header 'Access-Control-Allow-Origin'
 '*.example.com';
 add_header 'Access-Control-Allow-Headers'
 'DNT,

78 | Chapter 7: Security Controls

 Keep-Alive,
 User-Agent,
 X-Requested-With,
 If-Modified-Since,
 Cache-Control,
 Content-Type';
 }
 if ($cors_method = '11') {
 add_header 'Access-Control-Max-Age' 1728000;
 add_header 'Content-Type' 'text/plain; charset=UTF-8';
 add_header 'Content-Length' 0;
 return 204;
 }
 }
}

There’s a lot going on in this example, which has been condensed by using a map
to group the GET and POST methods together. The OPTIONS request method returns
a preflight request to the client about this server’s CORS rules. OPTIONS, GET, and
POST methods are allowed under CORS. Setting the Access-Control-Allow-Origin
header allows for content being served from this server to also be used on pages of
origins that match this header. The preflight request can be cached on the client for
1,728,000 seconds, or 20 days.

Discussion
Resources such as JavaScript use CORS when the resource they’re requesting is of a
domain other than their own. When a request is considered cross-origin, the browser
is required to obey CORS rules. The browser will not use the resource if it does
not have headers that specifically allow its use. To allow our resources to be used by
other subdomains, we have to set the CORS headers, which can be done with the
add_header directive. If the request is a GET, HEAD, or POST with standard content
type, and the request does not have special headers, the browser will make the request
and only check for origin. Other request methods will cause the browser to make the
preflight request to check the terms of the server it will obey for that resource. If you
do not set these headers appropriately, the browser will give an error when trying to
utilize that resource.

7.3 Client-Side Encryption
Problem
You need to encrypt traffic between your NGINX server and the client.

7.3 Client-Side Encryption | 79

Solution
Utilize one of the SSL modules to encrypt traffic, such as ngx_http_ssl_module or
ngx_stream_ssl_module:

http { # All directives used below are also valid in stream
 server {
 listen 8443 ssl;
 ssl_certificate /etc/nginx/ssl/example.crt;
 ssl_certificate_key /etc/nginx/ssl/example.key;
 }
}

This configuration sets up a server to listen on a port encrypted with SSL/TLS,
8443. The directive ssl_certificate defines the certificate and optional chain that
is served to the client. The ssl_certificate_key directive defines the key used by
NGINX to decrypt requests and encrypt responses. A number of SSL/TLS negotia‐
tion configurations are defaulted to secure presets for the NGINX version release
date.

Discussion
Secure transport layers are the most common way of encrypting information in
transit. As of this writing, the TLS protocol is preferred over the SSL protocol.
That’s because versions 1 through 3 of SSL are now considered insecure. In NGINX
version 1.23.4 and later, the default SSL protocols are TLSv1, TLSv1.1, TLSv1.2, and
TLSv1.3 (if supported by the OpenSSL library). Although the protocol name might
be different, TLS still establishes a secure socket layer. NGINX enables your service to
protect information exchanged between you and your clients, which in turn protects
the client and your business.

When using a CA-signed certificate, you need to concatenate the certificate with the
certificate authority chain. When you concatenate your certificate and the chain, your
certificate should be above the concatenated chain file. If your certificate authority
has provided multiple files as intermediate certificates for the chain, there is an order
in which they are layered. Refer to the certificate provider’s documentation for the
order.

See Also
Mozilla Security/Server Side TLS

Mozilla SSL Configuration Generator

SSL Labs’ SSL Server Test

80 | Chapter 7: Security Controls

https://oreil.ly/9UFYB
https://oreil.ly/xoyCM
https://oreil.ly/aVWE2

7.4 Advanced Client-Side Encryption
Problem
You have advanced client/server encryption configuration needs.

Solution
The http and stream SSL modules for NGINX enable complete control of the
accepted SSL/TLS handshake. Certificates and keys can be provided to NGINX by
way of filepath or variable value. NGINX presents the client with an accepted list
of protocols, ciphers, and key types, per its configuration. The highest standard
between the client and NGINX server is negotiated. NGINX can cache the result of
client/server SSL/TLS negotiation for a period of time.

The following intentionally demonstrates many options at once to illustrate the
available complexity of the client/server negotiation:

http { # All directives used below are also valid in stream
 server {
 listen 8443 ssl;
 # Set accepted protocol and cipher
 ssl_protocols TLSv1.2 TLSv1.3;
 ssl_ciphers HIGH:!aNULL:!MD5;

 # RSA certificate chain loaded from file
 ssl_certificate /etc/nginx/ssl/example.crt;
 # RSA encryption key loaded from file
 ssl_certificate_key /etc/nginx/ssl/example.pem;

 # Elliptic curve cert from variable value
 ssl_certificate $ecdsa_cert;
 # Elliptic curve key as file path variable
 ssl_certificate_key data:$ecdsa_key_path;

 # Client-Server negotiation caching
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 }
}

The server accepts the SSL protocol versions TLSv1.2 and TLSv1.3. The ciphers
accepted are set to HIGH, which is a macro for the highest standard; explicit denies are
demonstrated for aNULL and MD5 by denotation of the !.

7.4 Advanced Client-Side Encryption | 81

Two sets of certificate-key pairs are used. The values passed to the NGINX directives
demonstrate different ways to provide NGINX certificate-key values. A variable is
interpreted as a path to a file. When prefixed with data: the value of a variable is
interpreted as a direct value. Multiple certificate-key formats may be provided to offer
reverse compatibility to the client. The strongest standard the client is capable of and
that the server will accept will be the result of the negotiation.

If the SSL/TLS key is exposed as a direct value variable, it has the
potential of being logged or exposed by the configuration. Ensure
you have strict change and access controls if exposing the key value
as a variable.

The SSL session cache and timeout allow NGINX worker processes to cache and
store session parameters for a given amount of time. The NGINX worker processes
share this cache between themselves as processes within a single instantiation, but the
cache is not shared between machines. There are many other session cache options
that can help with performance or security of all types of use cases. You can use
session cache options in conjunction with one another. However, specifying a session
cache without the default will turn off the default built-in session cache.

Discussion
In this advanced example, NGINX provides the client with the SSL/TLS options of
TLSv1.2 or 1.3, highly regarded cipher algorithms, and the ability to use RSA or
Elliptic Curve Cryptography (ECC) formatted keys. The strongest of the protocols,
ciphers, and key formats the client is capable of is the result of the negotiation. The
configuration instructs NGINX to cache the negotiation for a period of 10 minutes
with the available memory allocation of 10 MB.

In testing, ECC certificates were found to be faster than the equivalent-strength RSA
certificates. The key size is smaller, which results in the ability to serve more SSL/TLS
connections, and with faster handshakes. NGINX allows you to configure multiple
certificates and keys, and then serve the optimal certificate for the client browser. This
allows you to take advantage of the newer technology but still serve older clients.

NGINX is encrypting the traffic between itself and the client in this
example. The connection to upstream servers may also be encryp‐
ted, however. The negotiation between NGINX and the upstream
server is demonstrated in Recipe 7.5.

82 | Chapter 7: Security Controls

See Also
Mozilla Security/Server Side TLS

Mozilla SSL Configuration Generator

SSL Labs’ SSL Server Test

7.5 Upstream Encryption
Problem
You need to encrypt traffic between NGINX and the upstream service and set specific
negotiation rules for compliance regulations, or the upstream service is outside of
your secured network.

Solution
Use the SSL directives of the HTTP proxy module to specify SSL rules:

location / {
 proxy_pass https://upstream.example.com;
 proxy_ssl_verify on;
 proxy_ssl_verify_depth 2;
 proxy_ssl_protocols TLSv1.3;
}

These proxy directives set specific SSL rules for NGINX to obey. The configured
directives ensure that NGINX verifies that the certificate and chain on the upstream
service is valid up to two certificates deep. The proxy_ssl_protocols directive speci‐
fies that NGINX will only use TLS version 1.3. By default, NGINX does not verify
upstream certificates and accepts all TLS versions.

Discussion
The configuration directives for the HTTP proxy module are vast, and if you
need to encrypt upstream traffic, you should at least turn on verification. You can
proxy over HTTPS simply by changing the protocol on the value passed to the
proxy_pass directive. However, this does not validate the upstream certificate. Other
directives, such as proxy_ssl_certificate and proxy_ssl_certificate_key, allow
you to lock down upstream encryption for enhanced security. You can also specify
proxy_ssl_crl or a certificate revocation list, which lists certificates that are no
longer considered valid. These SSL proxy directives help harden your system’s com‐
munication channels within your own network or across the public internet.

7.5 Upstream Encryption | 83

https://oreil.ly/9UFYB
https://oreil.ly/xoyCM
https://oreil.ly/aVWE2

7.6 Securing a Location
Problem
You need to secure a location block using a secret.

Solution
Use the secure link module and the secure_link_secret directive to restrict access
to resources to users who have a secure link:

location /resources {
 secure_link_secret mySecret;
 if ($secure_link = "") { return 403; }

 rewrite ^ /secured/$secure_link;
}

location /secured/ {
 internal;
 root /var/www;
}

This configuration creates both an internal and a public-facing location block. The
public-facing location block /resources will return a 403 Forbidden unless the
request URI includes an md5 hash string that can be verified with the secret provided
to the secure_link_secret directive. The $secure_link variable is an empty string
unless the hash in the URI is verified.

Discussion
Securing resources with a secret is a great way to ensure your files are protected. The
secret is used in conjunction with the URI. This string is then md5 hashed, and the
hex digest of that md5 hash is used in the URI. The hash is placed into the link and
evaluated by NGINX. NGINX knows the path to the file being requested because it’s
in the URI after the hash. NGINX also knows your secret because it’s provided via
the secure_link_secret directive. NGINX is able to quickly validate the md5 hash
and store the URI in the $secure_link variable. If the hash cannot be validated, the
variable is set to an empty string. It’s important to note that the argument passed to
the secure_link_secret must be a static string; it cannot be a variable.

7.7 Generating a Secure Link with a Secret
Problem
You need to generate a secure link from your application using a secret.

84 | Chapter 7: Security Controls

Solution
The secure link module in NGINX accepts the hex digest of an md5 hashed string,
where the string is a concatenation of the URI path and the secret. Building on
the last section, Recipe 7.6, we will create the secured link that will work with the
previous configuration example given that there’s a file present at /var/www/secured/
index.html. To generate the hex digest of the md5 hash, we can use the Unix openssl
command:

$ echo -n 'index.htmlmySecret' | openssl md5 -hex
(stdin)= a53bee08a4bf0bbea978ddf736363a12

Here we show the URI that we’re protecting, index.html, concatenated with our secret,
mySecret. This string is passed to the openssl command to output an md5 hex digest.

The following is an example of the same hash digest being constructed in Python
using the hashlib library that is included in the Python Standard Library:

import hashlib
hashlib.md5.(b'index.htmlmySecret').hexdigest()
'a53bee08a4bf0bbea978ddf736363a12'

Now that we have this hash digest, we can use it in a URL. Our example will be
www.example.com making a request for the file /var/www/secured/index.html through
our /resources location. Our full URL will be the following:

www.example.com/resources/a53bee08a4bf0bbea978ddf736363a12/\
index.html

Discussion
Generating the digest can be done in many ways, in many languages. Things to
remember: the URI path goes before the secret, there are no carriage returns in the
string, and use the hex digest of the md5 hash.

7.8 Securing a Location with an Expire Date
Problem
You need to secure a location with a link that expires at some future time and is
specific to a client.

Solution
Utilize the other directives included in the secure link module to set an expire time
and use variables in your secure link:

7.8 Securing a Location with an Expire Date | 85

location /resources {
 root /var/www;
 secure_link $arg_md5,$arg_expires;
 secure_link_md5 "$secure_link_expires$uri$remote_addrmySecret";
 if ($secure_link = "") { return 403; }
 if ($secure_link = "0") { return 410; }
}

The secure_link directive takes two parameters separated with a comma. The first
parameter is the variable that holds the md5 hash. This example uses an HTTP argu‐
ment of md5. The second parameter is a variable that holds the time in which the
link expires in Unix epoch time format. The secure_link_md5 directive takes a single
parameter that declares the format of the string that is used to construct the md5 hash.
Like the other configuration, if the hash does not validate, the $secure_link variable is
set to an empty string. However, with this usage, if the hash matches but the time has
expired, the $secure_link variable will be set to 0.

Discussion
This method of securing a link is more flexible and looks cleaner than the
secure_link_secret shown in Recipe 7.6. With these directives, you can use any num‐
ber of variables that are available to NGINX in the hashed string. Using user-specific
variables in the hash string will strengthen your security, as users won’t be able to trade
links to secured resources. It’s recommended to use a variable like $remote_addr or
$http_x_forwarded_for, or a session cookie header generated by the application. The
arguments to secure_link can come from any variable you prefer, and they can be
named whatever best fits. The conditions are: Do you have access? Are you accessing
it within the time frame? If you don’t have access: Forbidden. If you have access but
you’re late: Gone. The HTTP 410, Gone, works great for expired links because the
condition is to be considered permanent.

7.9 Generating an Expiring Link
Problem
You need to generate a link that expires.

Solution
Generate a timestamp for the expire time in the Unix epoch format. On a Unix
system, you can test by using the date as demonstrated in the following:

$ date -d "2030-12-31 00:00" +%s --utc
1924905600

86 | Chapter 7: Security Controls

Next, you’ll need to concatenate your hash string to match the string configured with
the secure_link_md5 directive. In this case, our string to be used will be 1924905600/
resources/index.html127.0.0.1 mySecret. The md5 hash is a bit different than just
a hex digest. It’s an md5 hash in binary format, base64-encoded, with plus signs (+)
translated to hyphens (-), slashes (/) translated to underscores (_), and equal signs (=)
removed. The following is an example on a Unix system:

$ echo -n '1924905600/resources/index.html127.0.0.1 mySecret' \
 | openssl md5 -binary \
 | openssl base64 \
 | tr +/ -_ \
 | tr -d =
sqysOw5kMvQBL3j9ODCyoQ

Now that we have our hash, we can use it as an argument along with the expire date:

/resources/index.html?md5=sqysOw5kMvQBL3j9ODCyoQ&expires=1924905600

The following is a more practical example in Python utilizing a relative time for the
expiration and setting the link to expire one hour from generation. At the time of
writing, this example works with Python 2.7 and 3.x utilizing the Python Standard
Library:

from datetime import datetime, timedelta
from base64 import b64encode
import hashlib

Set environment vars
resource = b'/resources/index.html'
remote_addr = b'127.0.0.1'
host = b'www.example.com'
mysecret = b'mySecret'

Generate expire timestamp
now = datetime.utcnow()
expire_dt = now + timedelta(hours=1)
expire_epoch = str.encode(expire_dt.strftime('%s'))

md5 hash the string
uncoded = expire_epoch + resource + remote_addr + mysecret
md5hashed = hashlib.md5(uncoded).digest()

Base64 encode and transform the string
b64 = b64encode(md5hashed)
unpadded_b64url = b64.replace(b'+', b'-')\
 .replace(b'/', b'_')\
 .replace(b'=', b'')

Format and generate the link
linkformat = "{}{}?md5={}?expires={}"
securelink = linkformat.format(
 host.decode(),

7.9 Generating an Expiring Link | 87

 resource.decode(),
 unpadded_b64url.decode(),
 expire_epoch.decode()
)
print(securelink)

Discussion
With this pattern, we’re able to generate a secure link in a special format that can be
used in URLs. The secret provides security through use of a variable that is never sent
to the client. You’re able to use as many other variables as you need to in order to
secure the location. md5 hashing and base64 encoding are common, lightweight, and
available in nearly every language.

7.10 HTTPS Redirects
Problem
You need to redirect unencrypted requests to HTTPS.

Solution
Use a rewrite to send all HTTP traffic to HTTPS:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 return 301 https://$host$request_uri;
}
server {
 listen 443 ssl;
 listen [::]:443 ssl;
 ssl_certificate /etc/nginx/ssl/example.crt;
 ssl_certificate_key /etc/nginx/ssl/example.key;
 ...
}

This configuration listens on port 80 as the default server for both IPv4 and IPv6
and for any hostname. The return statement returns a 301 permanent redirect to the
HTTPS server at the same host and request URI, which is handled by the server block
configured for SSL/TLS.

Discussion
It’s important to always redirect to HTTPS where appropriate. You may find that
you do not need to redirect all requests but only those with sensitive information

88 | Chapter 7: Security Controls

being passed between client and server. In that case, you may want to put the return
statement only in particular locations, such as /login.

7.11 Redirecting to HTTPS Where SSL/TLS
Is Terminated Before NGINX
Problem
You need to redirect to HTTPS, however, you’ve terminated SSL/TLS at a layer before
NGINX.

Solution
Use the common X-Forwarded-Proto header to determine if you need to redirect:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 if ($http_x_forwarded_proto = 'http') {
 return 301 https://$host$request_uri;
 }
}

This configuration is very much like HTTPS redirects. However, in this configuration
we’re only redirecting if the header X-Forwarded-Proto is equal to HTTP.

Discussion
It’s a common use case that you may terminate SSL/TLS in a layer in front of NGINX.
One reason you may do something like this is to save on compute costs. However,
you need to make sure that every request is HTTPS, but the layer terminating
SSL/TLS does not have the ability to redirect. It can, however, set proxy headers. This
configuration works with layers such as Amazon Web Services Elastic Load Balancing
(AWS ELB), which will offload SSL/TLS at no additional cost. This is a handy trick to
make sure that your HTTP traffic is secured.

7.12 HTTP Strict Transport Security
Problem
You need to instruct browsers to never send requests over HTTP.

7.11 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX | 89

Solution
Use the HTTP Strict Transport Security (HSTS) enhancement by setting the Strict-
Transport-Security header:

add_header Strict-Transport-Security max-age=31536000;

This configuration sets the Strict-Transport-Security header to a max age of a
year. This will instruct the browser to always do an internal redirect when HTTP
requests are attempted to this domain so that all requests will be made over HTTPS.

Discussion
For some applications, a single HTTP request trapped by a man-in-the-middle attack
could be the end of the company. If a form post containing sensitive information
is sent over HTTP, the HTTPS redirect from NGINX won’t save you; the damage
is done. This opt-in security enhancement informs the browser to never make an
HTTP request, and therefore the request is never sent unencrypted.

See Also
RFC Standard Documentation of HTTP Strict Transport Security

OWASP HTTP Strict Transport Security Cheat Sheet

7.13 Restricting Access Based on Country
Problem
You need to restrict access from particular countries for contractual or application
requirements.

Solution
Install the NGINX GeoIP module from the official NGINX repository for your
distribution.

NGINX Plus:

$ apt install nginx-plus-module-geoip

NGINX Open Source:

$ apt install nginx-module-geoip

90 | Chapter 7: Security Controls

https://oreil.ly/oLaZc
https://oreil.ly/AVn-g

Map the country codes you want to block or allow to a variable:

load_module
 "/etc/nginx/modules/ngx_http_geoip_module.so";

http {
 map $geoip_country_code $country_access {
 "US" 0;
 "CA" 0;
 default 1;
 }
 # ...
}

This mapping will set a new variable, $country_access, to a 1 or a 0. If the client
IP address originates from the US or Canada, the variable will be set to a 0. For any
other country, the variable will be set to a 1.

Now, within our server block, we’ll use an if statement to deny access to addresses
not originating from the US or Canada:

server {
 if ($country_access = '1') {
 return 403;
 }
 # ...
}

This if statement will evaluate True if the $country_access variable is set to 1. When
True, the server will return a 403 Unauthorized. Otherwise the server operates as
normal. So this if block is only there to deny access to addresses that are not from
the US or Canada.

Discussion
This is a short but simple example of how to only allow access from a couple of
countries. This example can be expounded on to fit your needs. You can utilize
this same practice to allow or block based on any of the embedded variables made
available from the GeoIP module.

See Also
NGINX Geo-IP Module Documentation

7.13 Restricting Access Based on Country | 91

https://oreil.ly/QtE-5

7.14 Satisfying Any Number of Security Methods
Problem
You need to provide multiple ways to pass security to a closed site.

Solution
Use the satisfy directive to instruct NGINX that you want to satisfy any or all of the
security methods used:

location / {
 satisfy any;

 allow 192.168.1.0/24;
 deny all;

 auth_basic "closed site";
 auth_basic_user_file conf/htpasswd;
}

This configuration tells NGINX that the user requesting the location / needs to
satisfy one of the security methods: either the request needs to originate from the
192.168.1.0/24 CIDR block, or it must be able to supply a username and password
that can be found in the conf/htpasswd file. The satisfy directive takes one of two
options: any or all.

Discussion
The satisfy directive is a great way to offer multiple ways to authenticate to your
web application. By specifying any to the satisfy directive, the user must meet
one of the security challenges. By specifying all to the satisfy directive, the user
must meet all of the security challenges. This directive can be used in conjunction
with the http_access_module detailed in Recipe 7.1, the http_auth_basic_module
detailed in Recipe 6.1, the http_auth_request_module detailed in Recipe 6.2, and the
http_auth_jwt_module detailed in Recipe 6.3. Security is only truly secure if it’s done
in multiple layers. The satisfy directive will help you achieve this for locations and
servers that require deep security rules.

7.15 NGINX Plus Dynamic Application Layer
DDoS Mitigation
Problem
You need a dynamic Distributed Denial of Service (DDoS) mitigation solution.

92 | Chapter 7: Security Controls

Solution
Use the NGINX App Protect DoS module or NGINX Plus features to build a cluster-
aware rate limit and automatic blocklist:

limit_req_zone $remote_addr zone=per_ip:1M rate=100r/s sync;
 # Cluster-aware rate limit
limit_req_status 429;

keyval_zone zone=sinbin:1M timeout=600 sync;
 # Cluster-aware "sin bin" with
 # 10-minute TTL
keyval $remote_addr $in_sinbin zone=sinbin;
 # Populate $in_sinbin with
 # matched client IP addresses

server {
 listen 80;
 location / {
 if ($in_sinbin) {
 set $limit_rate 50; # Restrict bandwidth of bad clients
 }

 limit_req zone=per_ip;
 # Apply the rate limit here
 error_page 429 = @send_to_sinbin;
 # Excessive clients are moved to
 # this location
 proxy_pass http://my_backend;
 }

 location @send_to_sinbin {
 rewrite ^ /api/9/http/keyvals/sinbin break;
 # Set the URI of the
 # "sin bin" key-val
 proxy_method POST;
 proxy_set_body '{"$remote_addr":"1"}';
 proxy_pass http://127.0.0.1:80;
 }

 location /api/ {
 api write=on;
 # directives to control access to the API
 }
}

7.15 NGINX Plus Dynamic Application Layer DDoS Mitigation | 93

Discussion
This solution uses a synchronized rate limit by way of a synchronized key-value store
to dynamically respond to DDoS attacks and mitigate their effects. Alternatively, if
you have NGINX App Protect, the DoS module provides this functionality. The sync
parameter provided to the limit_req_zone and keyval_zone directives synchronizes
the shared memory zone with other machines in the active-active NGINX Plus
cluster. This example identifies clients that send more than 100 requests per second,
regardless of which NGINX Plus node receives the request. When a client exceeds the
rate limit, its IP address is added to a “sin bin” key-value store by making a call to
the NGINX Plus API. The sin bin is synchronized across the cluster. Further requests
from clients in the sin bin are subject to a very low bandwidth limit, regardless of
which NGINX Plus node receives them. Limiting bandwidth is preferable to rejecting
requests outright because it does not clearly signal to the client that DDoS mitigation
is in effect. After 10 minutes, the client is automatically removed from the sin bin.

See Also
F5, Inc. NGINX App Protect DoS

7.16 Installing and Configuring NGINX Plus
with the NGINX App Protect WAF Module
Problem
You need to install and configure the NGINX App Protect WAF module.

Solution
Follow the NGINX App Protect WAF administration guide for your platform. Make
sure not to skip the portion about installing NGINX App Protect WAF signatures
from the separate repository.

Ensure that the NGINX App Protect WAF module is dynamically loaded by NGINX
Plus by using the load_module directive in the main context. Enable the module by
using the app_protect_* directives:

user nginx;
worker_processes auto;

load_module modules/ngx_http_app_protect_module.so;

... Other main context directives

http {
 app_protect_enable on;

94 | Chapter 7: Security Controls

https://oreil.ly/Kamy-
https://oreil.ly/jEOqg

 app_protect_policy_file "/etc/nginx/AppProtectTransparentPolicy.json";
 app_protect_security_log_enable on;
 app_protect_security_log "/etc/nginx/log-default.json"
 syslog:server=127.0.0.1:515;

 # ... Other http context directives
}

In this example, the app_protect_enable directive set to on enabled the module
for the current context. This directive, and all of the following, is valid within the
http context, as well as the server and location contexts with HTTP. The app_
protect_policy_file directive points to an NGINX App Protect WAF policy file,
which we will define next; if not defined, the default policy is used. Security logging
is configured next and requires a remote logging server. For the example, we’ve
configured it to the local Syslog listener. The app_protect_security_log directive
takes two parameters: the first is a JSON file that defines the logging settings, and
the second is a log stream destination. The log settings file will be shown later in this
section.

Build an NGINX App Protect WAF policy file, and name it /etc/nginx/AppProtect‐
TransparentPolicy.json:

{
 "policy": {
 "name": "transparent_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "transparent"
 }
}

This policy file configures the default NGINX App Protect WAF policy by use of
a template, setting the policy name to transparent_policy, and setting the enforce
mentMode to transparent, which means NGINX Plus will log but not block. Trans‐
parent mode is great for testing out new policies before putting them into effect.

Enable blocking by changing the enforcementMode to blocking. This policy file
can be named /etc/nginx/AppProtectBlockingPolicy.json. To switch between the files,
update the app_protect_policy_file directive in your NGINX Plus configuration:

{
 "policy": {
 "name": "blocking_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "blocking"
 }
}

7.16 Installing and Configuring NGINX Plus with the NGINX App Protect WAF Module | 95

To enable some of the protection features of NGINX App Protect WAF, add some
violations:

{
 "policy": {
 "name": "blocking_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "blocking",
 "blocking-settings": {
 "violations": [
 {
 "name": "VIOL_JSON_FORMAT",
 "alarm": true,
 "block": true
 },
 {
 "name": "VIOL_PARAMETER_VALUE_METACHAR",
 "alarm": true,
 "block": false
 }
]
 }
 }
}

The preceding example demonstrates adding two violations to our policy. Take note
that VIOL_PARAMETER_VALUE_METACHAR is not set to block, but only alarm; whereas
VIOL_JSON_FORMAT is set to block and alarm. This functionality enables the overriding
of the default enforcementMode when set to blocking. When enforcementMode is set
to transparent, the default enforcement setting takes precedence.

Set up an NGINX Plus logging file, named /etc/nginx/log-default.json:

{
 "filter":{
 "request_type":"all"
 },
 "content":{
 "format":"default",
 "max_request_size":"any",
 "max_message_size":"5k"
 }
}

This file was defined in the NGINX Plus configuration by the app_protect_
security_log directive and is necessary for NGINX App Protect WAF logging.

96 | Chapter 7: Security Controls

Discussion
This solution demonstrates the basics of configuring NGINX Plus with the NGINX
App Protect WAF module. The NGINX App Protect WAF module enables an entire
suite of web application firewall (WAF) definitions. These definitions derive from the
Advanced F5 Application Security functionality in F5, Inc. This comprehensive set of
WAF attack signatures has been extensively field-tested and proven. By adding this to
an NGINX Plus installation, it combines the best of F5 Application Security with the
agility of the NGINX platform.

Once the module is installed and enabled, most of the configuration is done in a pol‐
icy file. The policy files in this section showed how to enable active blocking, passive
monitoring, and transparent mode, as well as explained overrides to this functionality
with violations. Violations are only one type of protection offered. Other protections
include HTTP Compliance, Evasion Techniques, Attack Signatures, Server Technolo‐
gies, Data Guard, and many more. To retrieve NGINX App Protect WAF logs, it’s
necessary to use the NGINX Plus logging format and send the logs to a remote
listening service, a file, or /dev/stderr.

See Also
NGINX App Protect WAF Administration Guides

NGINX App Protect WAF Configuration Guide

NGINX App Protect DoS Deployment Guide

7.16 Installing and Configuring NGINX Plus with the NGINX App Protect WAF Module | 97

https://oreil.ly/jEOqg
https://oreil.ly/-6pa1
https://oreil.ly/dEtWU

CHAPTER 8

HTTP/2 and HTTP/3 (QUIC)

8.0 Introduction
HTTP/2 and HTTP/3 are major revisions to the HTTP protocol. Both of these
updates were designed to address a performance issue known as head-of-line block‐
ing, which causes network packets to be held up by the completion of the packet
queued before them. HTTP/2 mitigated the head-of-line blocking issue for the ini‐
tial TCP handshake in the application layer by enabling full request and response
multiplexing over a single TCP connection. The TCP protocol itself, however, still
exhibits this issue due to its packet loss recovery mechanisms, which require packets
to be transmitted in order and lost packets to block and be retransmitted before
proceeding. In HTTP/3, TCP was replaced with the QUIC (pronounced “quick”)
protocol, which is built on top of the user datagram protocol (UDP). UDP does
not require connection handshaking, transmission order, or implement packet loss
recovery, allowing QUIC to solve these transport challenges in more efficient ways.

HTTP/2 also introduced compression on HTTP header fields and support for request
prioritization. This chapter details the basic configuration for enabling HTTP/2 and
HTTP/3 in NGINX as well as configuring Google’s open source Remote Procedure
Call (gRPC).

8.1 Enabling HTTP/2
Problem
You want to take advantage of HTTP/2.

99

Solution
Turn on HTTP/2 on your NGINX server:

server {
 listen 443 ssl default_server;
 http2 on;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 # ...
}

Discussion
To turn on HTTP/2, you simply need to set the http2 directive to on. The catch,
however, is that although the protocol does not require the connection to be wrapped
in SSL/TLS, some implementations of HTTP/2 clients only support HTTP/2 over an
encrypted connection. Another caveat is that the HTTP/2 specification has blocked a
number of TLSv1.2 cipher suites, and therefore will fail the handshake. The ciphers
NGINX uses by default are not on the blocklist. The Application-Layer Protocol
Negotiation of TLS allows the application layer to negotiate which protocol should
be used over the secure connection to avoid additional round trips. To test that your
setup is correct, you can install a plug-in for Chrome and Firefox browsers that
indicates when a site is using HTTP/2. Alternatively, on the command line you can
use the nghttp utility.

See Also
HTTP/2 RFC Cipher Suite Black List

Chrome HTTP/2 and SPDY Indicator Plug-in

Firefox HTTP Version Indicator Add-on

8.2 Enabling HTTP/3
Problem
You want to utilize HTTP/3 over the QUIC protocol.

Solution
Enable QUIC on your NGINX server and instruct clients that the protocol is available
by returning the Alt-Svc header:

100 | Chapter 8: HTTP/2 and HTTP/3 (QUIC)

https://oreil.ly/T6mD1
https://oreil.ly/O9pYA
https://oreil.ly/8MTPW

server {
 # for better compatibility we recommend
 # using the same port number for QUIC and TCP
 listen 443 quic reuseport; # QUIC
 listen 443 ssl; # TCP

 ssl_certificate certs/example.com.crt;
 ssl_certificate_key certs/example.com.key;
 ssl_protocols TLSv1.3;

 location / {
 # advertise that QUIC is available on the configured port
 add_header Alt-Svc 'h3=":$server_port"; ma=86400';
 # ...
 }
}

Discussion
To turn on HTTP/3, you need to add the quic parameter to the listen directive.
You can, and should, also configure another listen directive instructing NGINX to
listen on the same port but for TCP connections. TLSv1.3 is required by the QUIC
protocol, and thus we configure the ssl_protocol directive to only negotiate to
TLSv1.3.

In order for the client to be informed that the requested HTTP service is available via
HTTP/3, an HTTP header called Alt-Svc is returned. When the client first makes a
request to the service, it will use HTTP/1.1 and receive a response with this header.
Its value tells the client what service is available, h3 for HTTP/3, as well as the port
number in which to find the service. In our example, we’re listening for TCP and
UDP on the same port, so we can use the $server_port variable to reduce hardcoded
values. Keep in mind that the port number returned should be the port that the client
should connect to, which may be different than what NGINX is listening on if you’re
doing any port mapping behind the scenes. How long to expect that service to be
available is also defined. This causes the client to continue to make UDP requests for
this service for the specified amount of time, in our case 86400 seconds (24 hours).

As of NGINX Open Source version 1.25.2, and NGINX Plus R30, the --with-
http_v3_module became a default module. Prior to these versions, it was necessary
to compile NGINX from source with an alternative SSL library and the --with-
http_v3_module configuration flag in order to use HTTP/3. At the time of this
writing, OpenSSL does not support QUIC’s TLS interfaces. The NGINX team at F5,
Inc. developed an OpenSSL Compatibility Layer, removing the need to build and ship
third-party TLS libraries like quictls, BoringSSL, and LibreSSL.

8.2 Enabling HTTP/3 | 101

See Also
“Announcing NGInX Plus R30”

“A Primer on QUIC Networking and Encryption in NGINX”

“Binary Packages Now Available for the Preview NGINX QUIC+HTTP/3
Implementation”

NGINX HTTP V3 Module Documentation

8.3 gRPC
Problem
You need to terminate, inspect, route, or load balance gRPC method calls.

Solution
Use NGINX to proxy gRPC connections:

server {
 listen 80;

 http2 on;
 location / {
 grpc_pass grpc://backend.local:50051;
 }
}

In this configuration, NGINX is listening on port 80 for unencrypted HTTP/2 traffic,
and proxying that traffic to a machine named backend.local on port 50051. The
grpc_pass directive instructs NGINX to treat the communication as a gRPC call. The
grpc:// in front of our backend server location is not necessary; however, it does
directly indicate that the backend communication is not encrypted.

To utilize TLS encryption between the client and NGINX, and terminate that encryp‐
tion before passing the calls to the application server, turn on SSL and HTTP/2, as
you did in the first section:

server {
 listen 443 ssl default_server;

 http2 on;
 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 location / {
 grpc_pass grpc://backend.local:50051;
 }
}

102 | Chapter 8: HTTP/2 and HTTP/3 (QUIC)

https://oreil.ly/B6dYJ
https://oreil.ly/T_fcM
https://oreil.ly/Ow6sx
https://oreil.ly/Ow6sx
https://oreil.ly/hLCrf

This configuration terminates TLS at NGINX and passes the gRPC communication
to the application over unencrypted HTTP/2.

To configure NGINX to encrypt the gRPC communication to the application server,
providing end-to-end encrypted traffic, simply modify the grpc_pass directive to
specify grpcs:// before the server information (note the addition of the s denoting
secure communication):

grpc_pass grpcs://backend.local:50051;

You also can use NGINX to route calls to different backend services based on the
gRPC URI, which includes the package, service, and method. To do so, utilize the
location directive:

location /mypackage.service1 {
 grpc_pass grpc://$grpc_service1;
}
location /mypackage.service2 {
 grpc_pass grpc://$grpc_service2;
}
location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
}

This configuration example uses the location directive to route incoming HTTP/2
traffic between two separate gRPC services, as well as a location to serve static
content. Method calls for the mypackage.service1 service are directed to the value
of the variable grpc_service1, which may contain a hostname or IP and optional
port. Calls for mypackage.service2 are directed to the value of the variable grpc_
service2. The location / catches any other HTTP request and serves static content.
This demonstrates how NGINX is able to serve gRPC and non-gRPC under the same
HTTP/2 endpoint and route accordingly.

Load balancing gRPC calls is also similar to non-gRPC HTTP traffic:

upstream grpcservers {
 server backend1.local:50051;
 server backend2.local:50051;
}
server {
 listen 443 ssl http2 default_server;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 location / {
 grpc_pass grpc://grpcservers;
 }
}

8.3 gRPC | 103

The upstream block works the exact same way for gRPC as it does for other HTTP
traffic. The only difference is that the upstream is referenced by grpc_pass.

Discussion
NGINX is able to receive, proxy, load balance, route, and terminate encryption
for gRPC calls. The gRPC module enables NGINX to set, alter, or drop gRPC
call headers, set timeouts for requests, and set upstream SSL/TLS specifications. As
gRPC communicates over the HTTP/2 protocol, you can configure NGINX to accept
gRPC and non-gRPC web traffic on the same endpoint.

104 | Chapter 8: HTTP/2 and HTTP/3 (QUIC)

CHAPTER 9

Sophisticated Media Streaming

9.0 Introduction
This chapter covers streaming media with NGINX in MPEG-4 (MP4) or Flash
Video (FLV) formats. NGINX is widely used to distribute and stream content to
the masses. NGINX supports industry-standard formats and streaming technologies,
which will be covered in this chapter. NGINX Plus enables the ability to fragment
content on the fly with the HTTP Live Streaming (HLS) module, as well as the
ability to deliver HTTP Dynamic Streaming (HDS) of already fragmented media.
NGINX natively allows for bandwidth limits, and NGINX Plus’s advanced features
offer bitrate limiting, enabling your content to be delivered in the most efficient
manner while reserving the servers’ resources to reach the most users.

9.1 Serving MP4 and FLV
Problem
You need to stream digital media, originating in MP4 or FLV.

Solution
Designate an HTTP location block to serve .mp4 or .flv videos. NGINX will stream
the media using progressive downloads or HTTP pseudostreaming and support
seeking:

http {
 server {
 # ...

 location /videos/ {

105

 mp4;
 }
 location ~ \.flv$ {
 flv;
 }
 }
}

The example location block tells NGINX that files in the videos directory are in
MP4 format and can be streamed with progressive download support. The second
location block instructs NGINX that any files ending in .flv are in FLV format and
can be streamed with HTTP pseudostreaming support.

Discussion
Streaming video or audio files in NGINX is as simple as a single directive. Progressive
download enables the client to initiate playback of the media before the file has
finished downloading. NGINX provides support for seeking to an undownloaded
portion of the media in both formats.

9.2 Streaming with HLS with NGINX Plus
Problem
You need to support HTTP Live Streaming (HLS) for H.264/AAC-encoded content
packaged in MP4 files.

Solution
Utilize NGINX Plus’s HLS module with real-time segmentation, packetization, and
multiplexing, with control over fragmentation buffering and more, like forwarding
HLS arguments:

location /hls/ {
 hls; # Use the HLS handler to manage requests

 # Serve content from the following location
 alias /var/www/video;

 # HLS parameters
 hls_fragment 4s;
 hls_buffers 10 10m;
 hls_mp4_buffer_size 1m;
 hls_mp4_max_buffer_size 5m;
}

This location block directs NGINX to stream HLS media out of the /var/www/video
directory, fragmenting the media into four-second segments. The number of HLS

106 | Chapter 9: Sophisticated Media Streaming

buffers is set to 10 with a size of 10 MB. The initial MP4 buffer size is set to 1 MB
with a maximum of 5 MB.

Discussion
The HLS module available in NGINX Plus provides the ability to transmultiplex MP4
media files on the fly. There are many directives that give you control over how your
media is fragmented and buffered. The location block must be configured to serve
the media as an HLS stream with the HLS handler. The HLS fragmentation is set in
number of seconds, instructing NGINX to fragment the media by time length. The
amount of buffered data is set with the hls_buffers directive specifying the number
of buffers and the size. The client is allowed to start playback of the media after a cer‐
tain amount of buffering has accrued, specified by the hls_mp4_buffer_size. How‐
ever, a larger buffer may be necessary because metadata about the video may exceed
the initial buffer size. This amount is capped by the hls_mp4_max_buffer_size.
These buffering variables allow NGINX to optimize the end-user experience. Choos‐
ing the right values for these directives requires knowing the target audience and
your media. For instance, if the bulk of your media is large video files, and your
target audience has high bandwidth, you may opt for a larger max buffer size and
longer length fragmentation. This will allow for the metadata about the content to be
downloaded initially without error and for your users to receive larger fragments.

9.3 Streaming with HDS with NGINX Plus
Problem
You need to support Adobe’s HTTP Dynamic Streaming (HDS) files that have already
been fragmented and separated from the metadata.

Solution
Use NGINX Plus’s support for fragmented FLV files via the f4f module to offer
Adobe Adaptive Streaming to your users:

location /video/ {
 alias /var/www/transformed_video;
 f4f;
 f4f_buffer_size 512k;
}

The example instructs NGINX Plus to serve previously fragmented media from a
location on disk to the client using the NGINX Plus f4f module. The buffer size for
the index file (.f4x) is set to 512 KB.

9.3 Streaming with HDS with NGINX Plus | 107

Discussion
The NGINX Plus f4f module enables NGINX to serve previously fragmented media
to end users. The configuration of such is as simple as using the f4f handler inside of
an HTTP location block. The f4f_buffer_size directive configures the buffer size
for the index file of this type of media.

9.4 Bandwidth Limits with NGINX Plus
Problem
You need to limit bandwidth to downstream media-streaming clients without affect‐
ing the viewing experience.

Solution
Utilize NGINX Plus’s bitrate-limiting support for MP4 media files:

location /video/ {
 mp4;
 mp4_limit_rate_after 15s;
 mp4_limit_rate 1.2;
}

This configuration allows the downstream client to download for 15 seconds before
applying a bitrate limit. After 15 seconds, the client is allowed to download media at a
rate of 120% of the bitrate, which enables the client to always download faster than it
plays the media.

Discussion
NGINX Plus’s bitrate limiting allows your streaming server to limit bandwidth
dynamically, based on the media being served, allowing clients to download just as
much as they need to ensure a seamless user experience. The MP4 handler described
in Recipe 9.1 designates this location block to stream MP4 media formats. The rate-
limiting directives, such as mp4_limit_rate_after, tell NGINX to only rate-limit
traffic after a specified amount of time, in seconds. The other directive involved in
MP4 rate limiting is mp4_limit_rate, which specifies the bitrate at which clients are
allowed to download in relation to the bitrate of the media. A value of 1 provided
to the mp4_limit_rate directive specifies that NGINX is to limit bandwidth (1-to-1)
to the bitrate of the media. Providing a value of more than 1 to the mp4_limit_rate
directive will allow users to download faster than they watch so they can buffer the
media and watch seamlessly while they download.

108 | Chapter 9: Sophisticated Media Streaming

CHAPTER 10

Cloud Deployments

10.0 Introduction
The advent of cloud providers has changed the landscape of web application hosting.
A process such as provisioning a new machine used to take anywhere from hours
to months; now, you can create one with as little as a click or an API call. These
cloud providers lease their virtual machines, called infrastructure as a service (IaaS),
or managed software solutions such as databases, through a pay-per-usage model,
which means you pay only for what you use. This enables engineers to build up entire
environments for testing and tear them down when they’re no longer needed. These
cloud providers also enable applications to scale horizontally based on performance
need at a moment’s notice. This chapter covers basic NGINX deployments on a
couple of the major cloud-provider platforms.

10.1 Auto-Provisioning
Problem
You need to automate the configuration of NGINX servers on Amazon Web Services
(AWS) for machines to be able to automatically provision themselves.

Solution
This section will use AWS as its example; however, the core concepts of auto-
provisioning will carry over to other cloud providers such as Azure, Google Cloud
Platform (GCP), and DigitalOcean.

109

Utilize Amazon Elastic Compute Cloud (EC2) UserData as well as a prebaked Ama‐
zon Machine Image (AMI). Create an AMI with NGINX and any supporting soft‐
ware packages installed. Utilize EC2 UserData to configure any environment-specific
configurations at runtime.

Discussion
There are three patterns of thought when provisioning on AWS:

Provision at boot
Start from a common Linux image, then run configuration management or shell
scripts at boot time to configure the server. This pattern is slow to start and can
be prone to errors.

Fully baked AMIs
Fully configure the server, then burn an AMI to use. This pattern boots very
fast and accurately. However, it’s less flexible to the environment around it, and
maintaining many images can be complex.

Partially baked AMIs
It’s a mix of both worlds. Partially baked is where software requirements are
installed and burned into an AMI, and environment configuration is done at
boot time. This pattern is flexible compared to a fully baked pattern, and fast
compared to a provision-at-boot solution.

Whether you choose to partially or fully bake your AMIs, you’ll want to automate
that process. To construct an AMI build pipeline, it’s suggested to use a couple of
tools:

Configuration management
Configuration management tools define the state of the server in code, such as
what version of NGINX is to be run and what user it’s to run as, what DNS
resolver to use, and who to proxy upstream to. This configuration management
code can be source controlled and versioned like a software project. Some popu‐
lar configuration management tools are Chef and Ansible, which were described
in Chapter 5.

Packer from HashiCorp
Packer is used to automate running your configuration management on almost
any virtualization or cloud platform and to burn a machine image if the run is
successful. Packer basically builds a virtual machine (VM) on the platform of
your choosing, then will SSH into the VM, run any provisioning you specify, and
burn an image. You can utilize Packer to run the configuration management tool
and reliably burn a machine image to your specification.

110 | Chapter 10: Cloud Deployments

To provision environmental configurations at boot time, you can utilize the Amazon
EC2 UserData to run commands the first time the instance is booted. If you’re using
the partially baked method, you can utilize this to configure environment-based
items at boot time. Examples of environment-based configurations might be what
server names to listen for, resolver to use, domain name to proxy to, or upstream
server pool to start with. UserData is a base64-encoded string that is downloaded at
the first boot and run. UserData can be as simple as an environment file accessed
by other bootstrapping processes in your AMI, or it can be a script written in any
language that exists on the AMI. It’s common for UserData to be a bash script that
specifies variables, or downloads variables, to pass to configuration management.
Configuration management ensures the system is configured correctly, templates
configuration files based on environment variables, and reloads services. After
UserData runs, your NGINX machine should be completely configured in a very
reliable way.

10.2 Deploying an NGINX VM in the Cloud
Problem
You need to create an NGINX server in your cloud provider to load balance or proxy
for the rest of your resources.

Solution
This section will use Azure as its example; however, the core concepts of deploying
an NGINX VM will carry over to other cloud providers such as AWS, GCP, and
DigitalOcean.

Create a new VM within the Azure Virtual Machine section of the console. You will
be prompted to select an Azure Subscription and Resource Group. If you do not have
any Resource Groups, use the option to create one. Provide a name for your VM,
along with a Region, Availability Options, Security Type, and Base Image. Choose
the Linux distribution that you’re most comfortable with. You will further have to
provide the requested Size of the VM and information about how you would like
Azure to set up an Administrator Account. For the Inbound Ports section, ensure that
port 22 is open so that you can gain access via SSH. Click the Next button to be taken
to the Disk configuration section.

Input the configuration options for a disk that will best suit your workload. Take into
consideration disk size and speed if you’ll be using NGINX to serve static assets or
cache resources, then advance to the Networking section.

10.2 Deploying an NGINX VM in the Cloud | 111

Within the Networking section, select or create a new Virtual Network and Subnet
for the VM. Assign a Public IP for this VM so that you’re able to access it from the
public internet, and ensure that you again allow port 22 for SSH access. For easier
cleanup, you may want to select the option to “Delete the public IP and NIC when the
VM is deleted.”

Unless you have a specific reason, the settings on the rest of the sections can be
left as their defaults. Select the Review and Create button. Review the configuration
and click the Create button, then wait for the Azure console to advance you to the
deployment progress screen.

Azure will create and configure all of the necessary resources while showing you
its progress. Once all of the resources are created, the “Go to resource” button will
become blue. When this happens you can click the button to view information about
your newly created VM.

In the Networking section of the Properties tab, locate the Public IP of the VM. Use
this IP and the Administrator credentials provided during configuration to gain SSH
access to the VM. Install NGINX or NGINX Plus through the package manager for
the given OS type. Configure NGINX as you see fit and reload. Alternatively, you
can install and configure NGINX through the Custom data startup script, which is a
configuration option in the Advanced section when creating a VM.

Discussion
Azure offers highly configurable VMs at a moment’s notice, along with networking
and computing in a virtualized cloud environment. Starting a VM takes little effort
and enables a world of possibilities. With an Azure VM, you have the full capabilities
of an NGINX server wherever and whenever you need it.

10.3 Creating an NGINX Machine Image
Problem
You need to create an NGINX machine image to quickly instantiate a VM or create
an instance template for an instance group.

Solution
This section will use GCP as its example; however, the core concepts of creating a
machine image will carry over to other cloud providers such as AWS, Azure, and
DigitalOcean.

112 | Chapter 10: Cloud Deployments

After installing and configuring NGINX on your VM instance, set the auto-delete
state of the boot disk to false. To set the auto-delete state of the disk, edit the VM.
On the Edit page under the disk configuration is a checkbox labeled “Delete boot
disk when instance is deleted.” Deselect this checkbox and save the VM configuration.
Once the auto-delete state of the instance is set to false, delete the instance. When
prompted, do not select the checkbox that offers to delete the boot disk. By perform‐
ing these tasks, you will be left with an unattached boot disk with NGINX installed.

After your instance is deleted and you have an unattached boot disk, you can create
a Google Compute Image. From the Image section of the Google Compute Engine
console, select Create Image. You will be prompted for an image name, family,
description, encryption type, and the source. The source type you need to use is disk;
for the source disk, select the unattached NGINX boot disk. Select Create, and Google
Compute Cloud will create an image from your disk.

Discussion
You can utilize Google Cloud Images to create VMs with a boot disk identical to the
server you’ve just created. The value in creating images is being able to ensure that
every instance of this image is identical. When installing packages at boot time in
a dynamic environment, unless using version locking with private repositories, you
run the risk of package version and updates not being validated before being run in a
production environment. With machine images, you can validate that every package
running on this machine is exactly as you tested, strengthening the reliability of your
service offering.

See Also
Google Cloud Images: Create Custom Images Documentation

10.4 Routing to NGINX Nodes Without
a Cloud Native Load Balancer
Problem
You need to route traffic to multiple active NGINX nodes or create an active-passive
failover set to achieve high availability without a load balancer in front of NGINX.

Solution
This section will use AWS as its example; however, the core concepts of DNS
A records will carry over to other cloud providers such as Azure, GCP, and
DigitalOcean.

10.4 Routing to NGINX Nodes Without a Cloud Native Load Balancer | 113

https://oreil.ly/JtnYE

Use the Amazon Route 53 DNS service to route to multiple active NGINX nodes or
configure health checks and failover between an active-passive set of NGINX nodes.

Discussion
DNS has balanced load between servers for a long time; moving to the cloud doesn’t
change that. The Route 53 service from Amazon provides a DNS service with
many advanced features, all available through an API. All the typical DNS tricks
are available, such as multiple IP addresses on a single A record and weighted A
records. When running multiple active NGINX nodes, you’ll want to use one of these
A-record features to spread load across all nodes. The round-robin algorithm is used
when multiple IP addresses are listed for a single A record. A weighted distribution
can be used to distribute load unevenly by defining weights for each server IP address
in an A record.

One of the more interesting features of Route 53 is its ability to health check. You
can configure Route 53 to monitor the health of an endpoint by establishing a TCP
connection or by making a request with HTTP or HTTPS. The health check is
highly configurable, with options for the IP, hostname, port, URI path, interval rates,
monitoring, and geography. With these health checks, Route 53 can take an IP out
of rotation if it begins to fail. You could also configure Route 53 to failover to a
secondary record in case of a failure, which would achieve an active-passive, highly
available setup.

Route 53 has a geography-based routing feature that will enable you to route your
clients to the closest NGINX node to them, for the least latency. When routing
by geography, your client is directed to the closest healthy physical location. When
running multiple sets of infrastructure in an active-active configuration, you can
automatically failover to another geographical location through the use of health
checks.

When using Route 53 DNS to route your traffic to NGINX nodes in an Auto
Scaling group, you’ll want to automate the creation and removal of DNS records.
To automate adding and removing NGINX machines to Route 53 as your NGINX
nodes scale, you can use Amazon’s Auto Scaling lifecycle hooks to trigger scripts
within the NGINX box itself or scripts running independently on Amazon Lambda.
These scripts would use the Amazon Command Line Interface (CLI) or software
development kit (SDK) to interface with the Amazon Route 53 API to add or remove
the NGINX machine IP and configured health check as it boots or before it is
terminated.

114 | Chapter 10: Cloud Deployments

See Also
Global Server Load Balancing with Amazon Route 53 and NGINX Plus

“Set Up Dynamic DNS for AWS EC2 Instance with Lambda Service”

10.5 The Load Balancer Sandwich
Problem
You need to autoscale your NGINX layer and distribute load evenly and easily
between application servers.

Solution
This section will use AWS as its example; however, the core concepts of sandwiching
NGINX between cloud native load balancers will carry over to other cloud providers
such as Azure, GCP, and DigitalOcean. This pattern is needed only for NGINX Open
Source because the feature set provided by the NLB is available in NGINX Plus.

Create a network load balancer (NLB). During creation of the NLB through the
console, you are prompted to create a new target group. If you do not do this through
the console, you will need to create this resource and attach it to a listener on the
NLB. You create an Auto Scaling group with a launch configuration that provisions
an EC2 instance with NGINX installed. The Auto Scaling group has a configuration
to link to the target group, which automatically registers any instance in the Auto
Scaling group to the target group configured on first boot. The target group is
referenced by a listener on the NLB. Place your upstream applications behind another
network load balancer and target group and then configure NGINX to proxy to the
application NLB.

Discussion
This common pattern is called the load balancer sandwich (Figure 10-1), putting
NGINX in an Auto Scaling group behind an NLB and the application Auto Scaling
group behind another NLB. The reason for having NLBs between every layer is
because the NLB works so well with Auto Scaling groups; they automatically register
new nodes and remove those being terminated as well as run health checks and pass
traffic to only healthy nodes.

10.5 The Load Balancer Sandwich | 115

https://oreil.ly/IlhWg
https://oreil.ly/Icmjs

Figure 10-1. This image depicts NGINX in a load balancer sandwich pattern with an
internal NLB for internal applications to utilize. A user makes a request to App-1, and
App-1 makes a request to App-2 through NGINX to fulfill the user’s request.

It might be necessary to build a second, internal NLB for the NGINX Open Source
layer because it allows services within your application to call out to other services
through the NGINX Auto Scaling group without leaving the network and re-entering
through the public NLB. This puts NGINX in the middle of all network traffic within
your application, making it the heart of your application’s traffic routing. This pattern
was originally called the elastic load balancer (ELB) sandwich; however, the NLB is
preferred when working with NGINX because the NLB is a Layer 4 load balancer,
whereas ELBs and ALBs are Layer 7 load balancers. Layer 7 load balancers transform
the request via the PROXY protocol and are redundant with the use of NGINX.

116 | Chapter 10: Cloud Deployments

You can use this pattern within other cloud providers as well. The concept is the
same if you’re using Azure load balancers and scale sets, or GCP load balancers and
Auto Scaling groups. The core value of this pattern is to use cloud native services to
provide automatic registration and load balancing of scaling application servers, and
use NGINX for proxy logic.

10.6 Load Balancing over Dynamically Scaling
NGINX Servers
Problem
You need to scale NGINX nodes behind a cloud native load balancer to achieve high
availability and dynamic resource usage.

Solution
This section will use Azure as its example; however, the core concepts of a scaling
NGINX layer and how to route traffic to it will carry over to other cloud providers
such as AWS, GCP, and DigitalOcean.

Create an Azure load balancer that is either public-facing or internal. Deploy an
NGINX VM image, or the NGINX Plus image from the Marketplace, into an Azure
Virtual Machine Scale Set (VMSS). Once your load balancer and VMSS are deployed,
configure a backend pool on the load balancer to the VMSS. Set up load-balancing
rules for the ports and protocols you’d like to accept traffic on, and direct them to the
backend pool.

Discussion
It’s common to scale NGINX to achieve high availability or to handle peak loads
without overprovisioning resources. In Azure you achieve this with VMSS. Using the
Azure load balancer provides ease of management for adding and removing NGINX
nodes to the pool of resources when scaling. With Azure load balancers, you’re able
to check the health of your backend pools and only pass traffic to healthy nodes. You
can run internal Azure load balancers in front of NGINX where you want to enable
access only over an internal network. You may use NGINX to proxy to an internal
load balancer fronting an application inside of a VMSS, using the load balancer for
the ease of registering and deregistering from the pool.

10.6 Load Balancing over Dynamically Scaling NGINX Servers | 117

10.7 Creating a Google App Engine Proxy
Problem
You need to create a proxy for Google App Engine to context switch between applica‐
tions or serve HTTPS under a custom domain.

Solution
Utilize NGINX in Google Compute Cloud. Create a VM in Google Compute Engine,
or create a VM image with NGINX installed and create an instance template with this
image as your boot disk. If you’ve created an instance template, follow up by creating
an instance group that utilizes that template.

Configure NGINX to proxy to your Google App Engine endpoint. Make sure to
proxy to HTTPS because Google App Engine is public, and you’ll want to ensure you
do not terminate HTTPS at your NGINX instance and allow information to travel
between NGINX and Google App Engine unsecured. Because App Engine provides
just a single DNS endpoint, you’ll need to use the proxy_pass directive rather than
an upstream block when using NGINX Open Source as DNS resolution in upstream
is only available in NGINX Plus. When proxying to Google App Engine, make sure
to set the endpoint as a variable in NGINX, then use that variable in the proxy_pass
directive to ensure NGINX does DNS resolution on every request. For NGINX to do
any DNS resolution, you’ll need to also utilize the resolver directive and point to
your favorite DNS resolver. Google makes the IP address 8.8.8.8 available for public
use. If you’re using NGINX Plus, you’ll be able to use the resolve flag on the server
directive within the upstream block, keepalive connections, and other benefits of the
upstream module when proxying to Google App Engine.

You may choose to store your NGINX configuration files in Google Cloud Storage,
then use the startup script for your instance to pull down the configuration at boot
time. This will allow you to change your configuration without having to burn a new
image. However, it will add to the startup time of your NGINX server.

Discussion
You will want to run NGINX in front of Google App Engine if you’re using your own
domain and want to make your application available via HTTPS. At this time, Google
App Engine does not allow you to upload your own SSL certificates. Therefore,
if you’d like to serve your app under a domain other than the Google-provided
appspot.com with encryption, you’ll need to create a proxy with NGINX to listen at
your custom domain. NGINX will encrypt communication between itself and your
clients, as well as between itself and Google App Engine.

118 | Chapter 10: Cloud Deployments

Another reason you may want to run NGINX in front of Google App Engine is
to host many App Engine apps under the same domain and use NGINX to do URI-
based context switching. Microservices are a popular architecture, and it’s common
for a proxy like NGINX to conduct the traffic routing. Google App Engine makes it
easy to deploy applications, and in conjunction with NGINX, you have a full-fledged
application delivery platform.

10.7 Creating a Google App Engine Proxy | 119

CHAPTER 11

Containers/Microservices

11.0 Introduction
Containers offer a layer of abstraction at the application layer, shifting the installation
of packages and dependencies from the deploy to the build process. This is important
because engineers are now shipping units of code that run and deploy in a uniform
way regardless of the environment. Promoting containers as runnable units reduces
the risk of dependency and configuration snafus between environments. Given this,
there has been a large drive for organizations to deploy their applications on container
platforms. When running applications on a container platform, it’s common to con‐
tainerize as much of the stack as possible, including your proxy or load balancer.
NGINX containerizes and ships with ease. It also includes many features that make
delivering containerized applications fluid. This chapter focuses on building NGINX
container images, features that make working in a containerized environment easier,
and deploying your image on Kubernetes and OpenShift.

When containerizing, it’s often common to decompose services into smaller applica‐
tions. When doing so, they’re tied back together by an API gateway. This chapter
provides a common case scenario of using NGINX as an API gateway to secure,
validate, authenticate, and route requests to the appropriate service.

A couple of architecture considerations about running NGINX in a container should
be called out. When containerizing a service, to make use of the Docker log driver,
logs must be output to /dev/stdout and error logs directed to /dev/stderr. By doing
so, the logs are streamed to the Docker log driver, which is able to route them to
consolidated logging servers natively.

Load-balancing methods are also of consideration when using NGINX Plus in a
containerized environment. The least_time load-balancing method was designed
with containerized networking overlays in mind. By favoring low response time,

121

NGINX Plus will pass the incoming request to the upstream server with the fastest
average response time. When all servers are adequately load balanced and performing
equally, NGINX Plus can optimize by network latency, prioritizing servers in closest
network proximity.

11.1 Using NGINX as an API Gateway
Problem
You need an API gateway to validate, authenticate, manipulate, and route incoming
requests for your use case.

Solution
Use NGINX as an API gateway. An API gateway provides an entry point to one or
more APIs. NGINX fits this role very well. This section will highlight some core
concepts and reference other sections within this book for more detail on specifics.
It’s also important to note that NGINX has published an entire ebook on this topic:
Deploying NGINX as an API Gateway by Liam Crilly.

Start by defining a server block for your API gateway within its own file. A name
such as /etc/nginx/api_gateway.conf will do:

server {
 listen 443 ssl;
 server_name api.company.com;
 # SSL Settings Chapter 7

 default_type application/json;
}

Add some basic error-handling responses to your server definition:

proxy_intercept_errors on;

error_page 400 = @400;
location @400 { return 400 '{"status":400,"message":"Bad request"}\n'; }

error_page 401 = @401;
location @401 { return 401 '{"status":401,"message":"Unauthorized"}\n'; }

error_page 403 = @403;
location @403 { return 403 '{"status":403,"message":"Forbidden"}\n'; }

error_page 404 = @404;
location @404 { return 404 '{"status":404,"message":"Resource not found"}\n'; }

122 | Chapter 11: Containers/Microservices

https://oreil.ly/75l-m

The preceding section of NGINX configuration can be added directly to the server
block in /etc/nginx/api_gateway.conf or a separate file, and imported via an include
directive. The include directive is covered in Recipe 1.6.

Use an include directive to import this server configuration into the main nginx.conf
file within the http context:

include /etc/nginx/api_gateway.conf;

You now need to define your upstream service endpoints. Chapter 2 covers load
balancing, which discusses the upstream block. As a reminder, upstream is valid
within the http context, and not within the server context. The following must be
included or set outside of the server block:

upstream service_1 {
 server 10.0.0.12:80;
 server 10.0.0.13:80;
}
upstream service_2 {
 server 10.0.0.14:80;
 server 10.0.0.15:80;
}

Depending on the use case, you may want to declare your services inline, as an
included file, or included per services. A case also exists where services should be
defined as proxy location endpoints; in this case, it’s suggested to define the endpoint
as a variable for use throughout. Chapter 5, “Programmability and Automation”,
discusses ways to automate adding and removing machines from upstream blocks.

Build an internally routable location within the server block for each service:

location = /_service_1 {
 internal;
 # Config common to service
 proxy_pass http://service_1/$request_uri;
}
location = /_service_2 {
 internal;
 # Config common to service
 proxy_pass http://service_2/$request_uri;
}

By defining internal routable locations for these services, configuration that is com‐
mon to the service can be defined once, rather than repeatedly.

From here, you need to build up location blocks that define specific URI paths for
a given service. These blocks will validate and route the request appropriately. An
API gateway can be as simple as routing requests based on path, and as detailed as
defining specific rules for every single accepted API URI. In the latter, you’ll want

11.1 Using NGINX as an API Gateway | 123

to devise a file structure for organization and use NGINX include to import your
configuration files. This concept is discussed in Recipe 1.6.

Create a new directory for the API gateway:

mkdir /etc/nginx/api_conf.d/

Build a specification of a service use case by defining location blocks within a file at
a path that makes sense for your configuration structure. Use the rewrite directive
to direct the request to the prior configured location block that proxies the request
to a service. The rewrite directive used in the following example instructs NGINX
to reprocess the request with an altered URI. The example defines rules specific to an
API resource, restricts HTTP methods, then uses the rewrite directive to send the
request to the previously defined internal common proxy location for the service:

location /api/service_1/object {
 limit_except GET PUT { deny all; }
 rewrite ^ /_service_1 last;
}
location /api/service_1/object/[^/]*$ {
 limit_except GET POST { deny all; }
 rewrite ^ /_service_1 last;
}

Repeat this step for each service. Employ logical separation by means of file and
directory structures to organize effectively for the use case. Use any and all informa‐
tion provided in this book to configure API location blocks to be as specific and
restrictive as possible.

If separate files were used for the preceding location or upstream blocks, ensure
they’re included in your server context:

server {
 listen 443 ssl;
 server_name api.company.com;
 # SSL Settings Chapter 7

 default_type application/json;

 include api_conf.d/*.conf;
}

Enable authentication to protect private resources by using one of the many methods
discussed in Chapter 6, or something as simple as preshared API keys as follows (note
the map directive is only valid in the http context):

124 | Chapter 11: Containers/Microservices

map $http_apikey $api_client_name {
 default "";

 "j7UqLLB+yRv2VTCXXDZ1M/N4" "client_one";
 "6B2kbyrrTiIN8S8JhSAxb63R" "client_two";
 "KcVgIDSY4Nm46m3tXVY3vbgA" "client_three";
}

Protect backend services from attack with NGINX by employing what you learned in
Chapter 2 to limit usage. In the http context, define one or many request limit shared
memory zones:

limit_req_zone $http_apikey
 zone=limitbyapikey:10m rate=100r/s;
limit_req_status 429;

Protect a given context with rate limits and authentication:

location /api/service_2/object {
 limit_req zone=limitbyapikey;

 # Consider writing these if's to a file
 # and using an include were needed.
 if ($http_apikey = "") {
 return 401;
 }
 if ($api_client_name = "") {
 return 403;
 }

 limit_except GET PUT { deny all; }
 rewrite ^ /_service_2 last;
}

Test out some calls to your API gateway:

$ curl -H "apikey: 6B2kbyrrTiIN8S8JhSAxb63R" \
 https://api.company.com/api/service_2/object

Discussion
API gateways provide an entry point to an API. That sounds vague and basic, so let’s
dig in. Integration points happen at many different layers. Any two independent serv‐
ices that need to communicate (integrate) should hold an API version contract. Such
version contracts define the compatibility of the services. An API gateway enfor‐
ces such contracts—authenticating, authorizing, transforming, and routing requests
between services.

This section demonstrated how NGINX can function as an API gateway by validat‐
ing, authenticating, and directing incoming requests to specific services and limiting

11.1 Using NGINX as an API Gateway | 125

their usage. This tactic is popular in microservice architectures, where a single API
offering is split among different services.

Employ all of what you have learned thus far to construct an NGINX server config‐
uration to the exact specifications for your use case. By weaving together the core
concepts demonstrated in this text, you have the ability to authenticate and authorize
the use of URI paths, route or rewrite requests based on any factor, limit usage, and
define what is and is not accepted as a valid request. There will never be a single
solution to an API gateway, as each is intimately and infinitely definable to the use
case it serves.

An API gateway provides an ultimate collaboration space between operations and
application teams to form a true DevOps organization. Application development
defines validity parameters of a given request. Delivery of such a request is typically
managed by what is considered IT (networking, infrastructure, security, and middle‐
ware teams). An API gateway acts as an interface between those two layers. The
construction of an API gateway requires input from all sides. Configuration of such
should be kept in some sort of source control. Many modern-day source-control
repositories have the concept of code owners. This concept allows you to require
specific users’ approval for certain files. In this way, teams can collaborate but also
verify changes specific to a given department.

Something to keep in mind when working with API gateways is the URI path. In the
example configuration, the entire URI path is passed to the upstream servers. This
means the service_1 example needs to have handlers at the /api/service_1/* path.
To perform path-based routing in this way, it’s best that the application doesn’t have
conflicting routes with another application.

If conflicting routes do apply, there are a few things you can do. Edit the code to
resolve the conflicts, or add a URI prefix configuration to one or both applications to
move one of them to another context. In the case of off-the-shelf software that can’t
be edited, you can rewrite the request’s URI upstream. However, if the application
returns links in the body, you’ll need to use regular expressions (regex) to rewrite the
body of the request before providing it to the client—this should be avoided.

See Also
Deploying NGINX as an API Gateway (ebook)

11.2 Using DNS SRV Records with NGINX Plus
Problem
You’d like to use your existing DNS service (SRV) record implementation as the
source for upstream servers with NGINX Plus.

126 | Chapter 11: Containers/Microservices

https://oreil.ly/75l-m

Solution
Specify the service directive with a value of http on an upstream server to instruct
NGINX to utilize the SRV record as a load-balancing pool:

http {
 resolver 10.0.0.2 valid=30s;

 upstream backend {
 zone backends 64k;
 server api.example.internal service=http resolve;
 }
}

This feature is an NGINX Plus exclusive. The configuration instructs NGINX Plus to
resolve DNS from a DNS server at 10.0.0.2 and set up an upstream server pool with
a single server directive. This server directive specified with the resolve parameter
is instructed to periodically re-resolve the domain name based on the DNS record
TTL, or the valid override parameter of the resolver directive. The service=http
parameter and value tells NGINX that this is an SRV record containing a list of IPs
and ports, and to load balance over them as if they were configured with the server
directive.

Discussion
Dynamic infrastructure is becoming ever more popular with the demand for and
adoption of cloud-based infrastructure. Auto Scaling environments scale horizontally,
increasing and decreasing the number of servers in the pool to match the demand
of the load. Scaling horizontally requires a load balancer that can add and remove
resources from the pool. With an SRV record, you offload the responsibility of
keeping the list of servers to DNS. This type of configuration is extremely enticing for
containerized environments because you may have containers running applications
on variable port numbers, possibly at the same IP address. It’s important to note that
UDP DNS record payload is limited to about 512 bytes.

11.3 Using the Official NGINX Container Image
Problem
You need to get up and running quickly with the NGINX image from Docker Hub.

Solution
Use the NGINX image from Docker Hub. This image contains a default configura‐
tion. You’ll need to either mount a local configuration directory or create a Dockerfile
and COPY in your configuration to the image build to alter the configuration. Here

11.3 Using the Official NGINX Container Image | 127

https://oreil.ly/8zvNE

we mount a volume where NGINX’s default configuration serves static content to
demonstrate its capabilities by using a single command:

$ docker run --name my-nginx -p 80:80 \
 -v /path/to/content:/usr/share/nginx/html:ro -d nginx

The docker command pulls the nginx:latest image from Docker Hub if it’s not
found locally. The command then runs this NGINX image as a Docker container,
mapping localhost:80 to port 80 of the NGINX container. It also mounts the local
directory /path/to/content/ as a container volume at /usr/share/nginx/html/ as read
only. The default NGINX configuration will serve this directory as static content.
When specifying mapping from your local machine to a container, the local machine
port or directory comes first, and the container port or directory comes second.

Discussion
NGINX has made an official container image available via Docker Hub and Amazon
Elastic Container Registry. This official container image makes it easy to get up
and going very quickly in Docker with your favorite application delivery platform,
NGINX. In this section, we were able to get NGINX up and running in a container
with a single command! The official NGINX container image that we used in this
example is built based on Debian. However, you can choose official images based
on Alpine Linux as well as images built from the mainline versus latest commits
and images built with the Perl module installed. The Dockerfile and source for these
official images are available on GitHub. You can extend the official image by building
your own Dockerfile and specifying the official image in the FROM command. You can
also mount an NGINX configuration directory as a Docker volume to override the
NGINX configuration without modifying the official image.

The official NGINX container image runs NGINX as the root user. When working in
platforms that require unprivileged users run the service, such as OpenShift, you can
use the official unprivileged image, nginxinc/nginx-unprivileged.

See Also
Official NGINX Container Image, NGINX

Docker Repository on GitHub

NGINX Unprivileged Container Image

11.4 Creating an NGINX Dockerfile
Problem
You need to create an NGINX Dockerfile in order to create a container image.

128 | Chapter 11: Containers/Microservices

https://oreil.ly/8zvNE
https://oreil.ly/oUpJ9
https://oreil.ly/72Tir

Solution
F5, Inc. maintains Dockerfiles and distributes them via GitHub. You can use these
Dockerfiles as a basis to build your own Dockerfile. These repositories have a number
of scripts that are included that aid in the installation of NGINX. Find the GitHub
repository here.

Start with a FROM line of your favorite distribution’s container image. The example
uses Debian 12. Ensure that your package manager is updated, and install the prereq‐
uisite packages needed to install the repository and signing keys for your package
manager to be able to use the official NGINX repository for your distribution. Use
the COPY command to add your NGINX configuration files. The COPY command will
place files from your local directory into the container image; use this to replace the
default NGINX configuration with your own. Optionally, use the EXPOSE command
to instruct Docker to expose given ports, or do this manually when you run the
image as a container. Use CMD to start NGINX when the image is instantiated as a
container. You’ll need to run NGINX in the foreground. To do this, you’ll need to
start NGINX with -g "daemon off;" or add daemon off; to your configuration. You
will also want to alter your NGINX configuration to log to /dev/stdout for access logs
and /dev/stderr for error logs; doing so will put your logs into the hands of the Docker
daemon, which will make them more easily available, based on the log driver you’ve
chosen to use with Docker. Here is the Dockerfile provided by NGINX:

FROM debian:bookworm-slim

LABEL maintainer="NGINX Docker Maintainers <docker-maint@nginx.com>"

ENV NGINX_VERSION 1.25.3
ENV NJS_VERSION 0.8.2
ENV PKG_RELEASE 1~bookworm

RUN set -x \
create nginx user/group first, to be consistent throughout
docker variants
 && groupadd --system --gid 101 nginx \
 && useradd --system --gid nginx --no-create-home --home \
 /nonexistent --comment "nginx user" --shell /bin/false \
 --uid 101 nginx \
 && apt-get update \
 && apt-get install --no-install-recommends --no-install-suggests \
 -y gnupg1 ca-certificates \
 && \
 NGINX_GPGKEY=573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62; \
 NGINX_GPGKEY_PATH=/usr/share/keyrings/nginx-archive-keyring.gpg; \
 export GNUPGHOME="$(mktemp -d)"; \
 found=''; \
 for server in \
 hkp://keyserver.ubuntu.com:80 \

11.4 Creating an NGINX Dockerfile | 129

https://oreil.ly/RVUk1
https://oreil.ly/RVUk1

 pgp.mit.edu \
 ; do \
 echo "Fetching GPG key $NGINX_GPGKEY from $server"; \
 gpg1 --keyserver "$server" --keyserver-options timeout=10 \
 --recv-keys "$NGINX_GPGKEY" && found=yes && break; \
 done; \
 test -z "$found" && echo >&2 "error: failed to fetch GPG key \
 $NGINX_GPGKEY" && exit 1; \
 gpg1 --export "$NGINX_GPGKEY" > "$NGINX_GPGKEY_PATH" ; \
 rm -rf "$GNUPGHOME"; \
 apt-get remove --purge --auto-remove -y gnupg1 && \
 rm -rf /var/lib/apt/lists/* \
 && dpkgArch="$(dpkg --print-architecture)" \
 && nginxPackages=" \
 nginx=${NGINX_VERSION}-${PKG_RELEASE} \
 nginx-module-xslt=${NGINX_VERSION}-${PKG_RELEASE} \
 nginx-module-geoip=${NGINX_VERSION}-${PKG_RELEASE} \
 nginx-module-image-filter=${NGINX_VERSION}-${PKG_RELEASE} \
 nginx-module-njs=${NGINX_VERSION}+${NJS_VERSION}-${PKG_RELEASE} \
 " \
 && case "$dpkgArch" in \
 amd64|arm64) \
arches officially built by upstream
 echo "deb [signed-by=$NGINX_GPGKEY_PATH] \
 https://nginx.org/packages/mainline/debian/ bookworm nginx" >> \
 /etc/apt/sources.list.d/nginx.list \
 && apt-get update \
 ;; \
 *) \
we're on an architecture upstream doesn't officially build for
let's build binaries from the published source packages
 echo "deb-src [signed-by=$NGINX_GPGKEY_PATH] \
 https://nginx.org/packages/mainline/debian/ \
 bookworm nginx" >> /etc/apt/sources.list.d/nginx.list \
 \
new directory for storing sources and .deb files
 && tempDir="$(mktemp -d)" \
 && chmod 777 "$tempDir" \
(777 to ensure APT's "_apt" user can access it too)
 \
save list of currently installed packages to build
dependencies can be cleanly removed later
 && savedAptMark="$(apt-mark showmanual)" \
 \
build .deb files from upstream's source packages
(which are verified by apt-get)
 && apt-get update \
 && apt-get build-dep -y $nginxPackages \
 && (\
 cd "$tempDir" \
 && DEB_BUILD_OPTIONS="nocheck parallel=$(nproc)" \
 apt-get source --compile $nginxPackages \

130 | Chapter 11: Containers/Microservices

) \
we don't remove APT lists here because they get redownloaded
and removed later
 \
reset apt-mark's "manual" list so that "purge --auto-remove"
will remove all build dependencies
(which is done after we install the built packages so we
don't have to redownload any overlapping dependencies)
 && apt-mark showmanual | xargs apt-mark auto > /dev/null \
 && { [-z "$savedAptMark"] || apt-mark manual $savedAptMark; } \
 \
create a temporary local APT repo to install from
(so that dependency resolution can be handled by APT, as it should be)
 && ls -lAFh "$tempDir" \
 && (cd "$tempDir" && dpkg-scanpackages . > Packages) \
 && grep '^Package: ' "$tempDir/Packages" \
 && echo "deb [trusted=yes] file://$tempDir ./" > \
 /etc/apt/sources.list.d/temp.list \
work around the following APT issue by using
"Acquire::GzipIndexes=false" (overriding
"/etc/apt/apt.conf.d/docker-gzip-indexes")
Could not open file
/var/lib/apt/lists/partial/_tmp_tmp.ODWljpQfkE_._Packages -
open (13: Permission denied)
...
E: Failed to fetch
store:/var/lib/apt/lists/partial/_tmp_tmp.ODWljpQfkE_._Packages
Could not open file
/var/lib/apt/lists/partial/_tmp_tmp.ODWljpQfkE_._Packages -
open (13: Permission denied)
 && apt-get -o Acquire::GzipIndexes=false update \
 ;; \
 esac \
 \
 && apt-get install --no-install-recommends --no-install-suggests -y \
 $nginxPackages \
 gettext-base \
 curl \
 && apt-get remove --purge --auto-remove -y &&
 rm -rf /var/lib/apt/lists/* /etc/apt/sources.list.d/nginx.list \
 \
if we have leftovers from building, let's purge
them (including extra, unnecessary build deps)
 && if [-n "$tempDir"]; then \
 apt-get purge -y --auto-remove \
 && rm -rf "$tempDir" /etc/apt/sources.list.d/temp.list; \
 fi \
forward request and error logs to docker log collector
 && ln -sf /dev/stdout /var/log/nginx/access.log \
 && ln -sf /dev/stderr /var/log/nginx/error.log \
create a docker-entrypoint.d directory
 && mkdir /docker-entrypoint.d

11.4 Creating an NGINX Dockerfile | 131

COPY docker-entrypoint.sh /
COPY 10-listen-on-ipv6-by-default.sh /docker-entrypoint.d
COPY 15-local-resolvers.envsh /docker-entrypoint.d
COPY 20-envsubst-on-templates.sh /docker-entrypoint.d
COPY 30-tune-worker-processes.sh /docker-entrypoint.d
ENTRYPOINT ["/docker-entrypoint.sh"]

EXPOSE 80

STOPSIGNAL SIGQUIT

CMD ["nginx", "-g", "daemon off;"]

Discussion
You will find it useful to create your own Dockerfile when you require full control
over the packages installed and updates. It’s common to keep your own repository of
images so that you know your base image is reliable and tested by your team before
running it in production.

See Also
Official NGINX Docker Repository on GitHub

11.5 Building an NGINX Plus Container Image
Problem
You need to build an NGINX Plus container image to run NGINX Plus in a contain‐
erized environment.

Solution
F5, Inc. maintains a blog that is kept up-to-date for installing NGINX Plus via a
Dockerfile. You can use these Dockerfiles as a basis to build your own Dockerfile.

Use the Dockerfile found in the blog to build an NGINX Plus container image. It
follows the same steps as the Dockerfile for NGINX Open Source in Recipe 11.4;
however, you’ll need to download your NGINX Plus repository certificates, named
nginx-repo.crt and nginx-repo.key, respectively, and keep them in the directory with
this Dockerfile. With that, this Dockerfile will do the rest of the work of installing
NGINX Plus for your use.

132 | Chapter 11: Containers/Microservices

https://oreil.ly/6AyX4
https://oreil.ly/r1-5W

The following docker build command uses the flag --no-cache to ensure that
whenever you build this, the NGINX Plus packages are pulled fresh from the NGINX
Plus repository for updates. If it’s acceptable to use the same version on NGINX
Plus as the prior build, you can omit the --no-cache flag. In this example, the new
container image is tagged nginxplus:

$ docker build --no-cache -t nginx-plus .

Discussion
By creating your own container image for NGINX Plus, you can configure your
NGINX Plus container however you see fit and drop it into any Docker environment.
This opens up all of the power and advanced features of NGINX Plus to your
containerized environment. This Dockerfile uses the Dockerfile property COPY to add
in your configuration; you will need to add your configuration to the local directory.

See Also
“Deploying NGINX and NGINX Plus with Docker”

11.6 Using Environment Variables in NGINX
Problem
You need to use environment variables inside your NGINX configuration in order to
use the same container image for different environments.

Solution
Use one of the official NGINX container image variants built with the NGINX Perl
module such as nginx:stable-perl.

Use the load_module directive to enable the nginx_http_perl_module. By default,
NGINX removes all environment variables inherited from its parent process except
the TZ variable. You preserve variables by using the env directive; however, these
variables are not exposed to the configuration. This example preserves an environ‐
ment variable named APP_DNS within the NGINX process and uses the perl_set
directive from the Perl module to set an environment variable that is available to
the configuration. The environment variable exposed to the NGINX configuration is
named $upstream_app. The $upstream_app variable is then used as the domain to
which requests will be proxied:

load_module /modules/
ngx_http_perl_module.so;
env APP_DNS;
...

11.6 Using Environment Variables in NGINX | 133

https://oreil.ly/AJSVc

http {
 perl_set $upstream_app 'sub { return $ENV{"APP_DNS"}; }';
 server {
 # ...
 location / {
 proxy_pass https://$upstream_app;
 }
 }
}

Discussion
A typical practice when using Docker is to utilize environment variables to change
the way the container operates. You can use environment variables in your NGINX
configuration so that your NGINX Dockerfile can be used in multiple diverse envi‐
ronments.

11.7 NGINX Ingress Controller from NGINX
Problem
You are deploying your application on Kubernetes and need an ingress controller.

Solution
Ensure that you have access to the ingress controller image. For NGINX Open
Source, you can use the nginx/nginx-ingress image from Docker Hub. For NGINX
Plus, you can pull from the F5, Inc. container repository or build your own image
and host it in your private container image registry. You can find instructions on
building and pushing your own NGINX Plus Kubernetes Ingress Controller in the
NGINX documentation.

Visit the Kubernetes Ingress Controller Deployments folder in the kubernetes-ingress
repository on GitHub. The commands that follow will be run from within this
directory of a local copy of the repository.

Create a namespace and a service account for the ingress controller; both are named
nginx-ingress:

$ kubectl apply -f common/ns-and-sa.yaml

Optionally, you can create a config map for customizing the NGINX configuration
(the config map provided is blank; however, you can read more in the NGINX
documentation about customization of ConfigMaps and annotations):

$ kubectl apply -f common/nginx-config.yaml

134 | Chapter 11: Containers/Microservices

https://oreil.ly/_hEvZ
https://oreil.ly/KxF7i
https://oreil.ly/KxF7i
https://oreil.ly/MgcTH
https://oreil.ly/sVL1Z

If role-based access control (RBAC) is enabled in your cluster, create a cluster role
and bind it to the service account. You must be a cluster administrator to perform
this step:

$ kubectl apply -f rbac/rbac.yaml

Now deploy the ingress controller. Two example deployments are made available in
this repository: a Deployment and a DaemonSet. Use a Deployment if you plan to
dynamically change the number of ingress controller replicas. Use a DaemonSet to
deploy an ingress controller on every node or a subset of nodes.

If you plan to use the NGINX Plus Deployment manifests, you must alter the YAML
file and specify your own registry and image.

For an NGINX Deployment:

$ kubectl apply -f deployment/nginx-ingress.yaml

For an NGINX Plus Deployment:

$ kubectl apply -f deployment/nginx-plus-ingress.yaml

For an NGINX DaemonSet:

$ kubectl apply -f daemon-set/nginx-ingress.yaml

For an NGINX Plus DaemonSet:

$ kubectl apply -f daemon-set/nginx-plus-ingress.yaml

Validate that the ingress controller is running:

$ kubectl get pods --namespace=nginx-ingress

If you created a DaemonSet, ports 80 and 443 of the ingress controller are mapped
to the same ports on the node where the container is running. To access the ingress
controller, use those ports and the IP address of any of the nodes on which the ingress
controller is running. If you deployed a Deployment, continue with the next steps.

For the Deployment methods, there are two options for accessing the ingress control‐
ler pods. You can instruct Kubernetes to randomly assign a node port that maps to
the ingress controller pod. This is a service with the type NodePort. The other option
is to create a service with the type LoadBalancer. When creating a service of type
LoadBalancer, Kubernetes builds a load balancer for the given cloud platform, such
as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform.

To create a service of type NodePort, use the following:

$ kubectl create -f service/nodeport.yaml

To statically configure the port that is opened for the pod, alter the YAML and add
the attribute nodePort: {port} to the configuration of each port being opened.

11.7 NGINX Ingress Controller from NGINX | 135

To create a service of type LoadBalancer for Google Cloud Compute or Azure, use
this code:

$ kubectl create -f service/loadbalancer.yaml

To create a service of type LoadBalancer for AWS:

$ kubectl create -f service/loadbalancer-aws-elb.yaml

On AWS, Kubernetes creates a classic ELB in TCP mode with the PROXY protocol
enabled. You must configure NGINX to use the PROXY protocol. To do so, you can
add the following to the config map mentioned previously in reference to the file
common/nginx-config.yaml:

proxy-protocol: "True"
real-ip-header: "proxy_protocol"
set-real-ip-from: "0.0.0.0/0"

Then, update the config map:

$ kubectl apply -f common/nginx-config.yaml

You can now address the pod by its NodePort or by making a request to the load
balancer created on its behalf.

Discussion
As of this writing, Kubernetes is the leading platform in container orchestration and
management. The ingress controller is the edge pod that routes traffic to the rest
of your application. NGINX fits this role perfectly and makes it simple to configure
with its annotations. The NGINX Ingress project offers an NGINX Open Source
Ingress Controller out of the box from a Docker Hub image, and for NGINX Plus
you can use the F5 Container Registry through a few steps to add your repository cer‐
tificate and key. Enabling your Kubernetes cluster with an NGINX Ingress Controller
provides all the same features of NGINX but with the added features of Kubernetes
networking and DNS to route traffic.

136 | Chapter 11: Containers/Microservices

CHAPTER 12

High-Availability Deployment Modes

12.0 Introduction
Fault-tolerant architecture separates systems into identical, independent stacks. Load
balancers like NGINX are employed to distribute load, ensuring that what’s provi‐
sioned is utilized. The core concepts of high availability are load balancing over
multiple active nodes or an active-passive failover. Highly available applications have
no single points of failure; every component must use one of these concepts, includ‐
ing the load balancers themselves. For us, that means NGINX. NGINX is designed to
work in either configuration: multiple active or active-passive failover. This chapter
details techniques on how to run multiple NGINX servers to ensure high availability
in your load-balancing tier.

12.1 NGINX Plus HA Mode
Problem
You need a highly available (HA) load-balancing solution in an on-premises
deployment.

Solution
Use NGINX Plus’s HA mode with keepalived by installing the nginx-ha-keepalived
package from the NGINX Plus repository on two or more systems:

$ sudo apt update
$ sudo apt install -y nginx-ha-keepalived

137

Use the nginx-ha-setup script to bootstrap a keepalived configuration file on each
system, and follow through the prompts:

$ sudo nginx-ha-setup

Review the configuration file generated by the nginx-ha-setup command:

$ sudo cat /etc/keepalived/keepalived.conf

global_defs {
 vrrp_version 3
}

vrrp_script chk_manual_failover {
 script "/usr/lib/keepalived/nginx-ha-manual-failover"
 interval 10
 weight 50
}

vrrp_script chk_nginx_service {
 script "/usr/lib/keepalived/nginx-ha-check"
 interval 3
 weight 50
}

vrrp_instance VI_1 {
 interface eth0
 priority 101
 virtual_router_id 51
 advert_int 1
 accept
 garp_master_refresh 5
 garp_master_refresh_repeat 1
 unicast_src_ip 172.17.0.2/16
 unicast_peer {
 172.17.0.4
 }
 virtual_ipaddress {
 172.17.0.3
 }
 track_script {
 chk_nginx_service
 chk_manual_failover
 }
 notify "/usr/lib/keepalived/nginx-ha-notify"
}

138 | Chapter 12: High-Availability Deployment Modes

Test the configured health check script to ensure the node is healthy:

$ sudo /usr/lib/keepalived/nginx-ha-check

nginx is running.

On the secondary node, dump the VRRP extended statistics and data to the filesys‐
tem, and review the output:

$ sudo service keepalived dump

Dumping VRRP stats (/tmp/keepalived.stats)
and data (/tmp/keepalived.data)

$ sudo cat /tmp/keepalived.stats

VRRP Instance: VI_1
 Advertisements:
 Received: 1985
 Sent: 0
 Became master: 0
 Released master: 0
 Packet Errors:
 Length: 0
 TTL: 0
 Invalid Type: 0
 Advertisement Interval: 0
 Address List: 0
 Authentication Errors:
 Invalid Type: 0
 Type Mismatch: 0
 Failure: 0
 Priority Zero:
 Received: 0
 Sent: 0

Force a state change on the primary node:

$ sudo service keepalived stop

Stopping keepalived: keepalived.

Again, on the secondary node, dump the VRRP extended statistics and data to the
filesystem, and review the output:

$ sudo service keepalived dump

Dumping VRRP stats (/tmp/keepalived.stats)
and data (/tmp/keepalived.data)

$ sudo cat /tmp/keepalived.stats

VRRP Instance: VI_1
 Advertisements:

12.1 NGINX Plus HA Mode | 139

 Received: 1993
 Sent: 278
 Became master: 1
 Released master: 0
 Packet Errors:
 Length: 0
 TTL: 0
 Invalid Type: 0
 Advertisement Interval: 0
 Address List: 0
 Authentication Errors:
 Invalid Type: 0
 Type Mismatch: 0
 Failure: 0
 Priority Zero:
 Received: 0
 Sent: 0

Note that the statistics file now reports that the node that was initially the secondary
became the primary node at least once.

Discussion
The nginx-ha-keepalived package is based on keepalived and manages a virtual
IP address exposed to the client. This solution is designed to work in environments
where IP addresses can be controlled through standard operating system calls, and
it often does not work in cloud environments where IP addresses are controlled
through interfacing with the cloud infrastructure.

Keepalived is a process that utilizes the Virtual Router Redundancy Protocol (VRRP),
sending small messages, often referred to as heartbeats, to the backup server. If
the backup server does not receive the heartbeat for three consecutive periods, the
backup server initiates the failover, moving the virtual IP address to itself and becom‐
ing the primary. The failover capabilities of nginx-ha-keepalived can be configured
to identify custom failure situations. The nginx-ha-setup script is only meant to
provide a basic configuration. Further customization of keepalived can be done by
editing its configuration file and restarting the service.

See Also
Keepalived Documentation

12.2 Load Balancing Load Balancers with DNS
Problem
You need to distribute load between two or more NGINX servers.

140 | Chapter 12: High-Availability Deployment Modes

https://oreil.ly/EMbiF

Solution
Use DNS to round robin across NGINX servers by adding multiple IP addresses to a
DNS A record.

Discussion
When running multiple load balancers, you can distribute load via DNS. The A
record allows for multiple IP addresses to be listed under a single FQDN. DNS will
automatically round robin across all the IPs listed. DNS also offers weighted round
robin with weighted records, which works in the same way as weighted round robin
in NGINX as described in Chapter 2. These techniques work great. However, a pitfall
can be removing the record when an NGINX server encounters a failure. There are
DNS providers—Amazon Route 53 for one, and DynDNS for another—that offer
health checks and failover with their DNS offering, which alleviates these issues. If
you are using DNS to load balance over NGINX, when an NGINX server is marked
for removal, it’s best to follow the same protocols that NGINX does when removing
an upstream server. First, stop sending new connections to it by removing its IP from
the DNS record, then allow connections to drain before stopping or shutting down
the service.

12.3 Load Balancing on EC2
Problem
You are using NGINX on AWS, and the NGINX Plus HA does not support Amazon
IPs.

Solution
Put NGINX behind an AWS NLB by configuring an Auto Scaling group of NGINX
servers and linking the Auto Scaling group to a target group, and then attach the
target group to the NLB (see Recipe 10.5). Alternatively, you can place NGINX
servers into the target group manually by using the AWS console, command-line
interface, or API.

Discussion
The HA solution from NGINX Plus based on keepalived will not work on AWS
because it does not support the floating virtual IP address, since EC2 IP addresses
work in a different way. This does not mean that NGINX can’t be HA in the AWS
cloud; in fact, the opposite is true. The AWS NLB is a product offering from Ama‐
zon that will natively load balance over multiple, physically separated data centers
called availability zones, provide active health checks, and provide a DNS CNAME

12.3 Load Balancing on EC2 | 141

endpoint. A common solution for HA NGINX on AWS is to put an NGINX layer
behind the NLB. NGINX servers can be automatically added to and removed from
the target group as needed. The NLB is not a replacement for NGINX; there are
many things NGINX offers that the NLB does not, such as multiple load-balancing
methods, rate limiting, caching, and Layer 7 routing. The AWS ALB does perform
Layer 7 load balancing based on the URI path and host header, but it does not by
itself offer features that NGINX does, such as WAF caching, bandwidth limiting, and
more. In the event that the NLB does not fit your need, there are many other options.
One option is the DNS solution: Route 53 from AWS offers health checks and DNS
failover.

12.4 NGINX Plus Configuration Synchronization
Problem
You’re running an HA NGINX Plus tier and need to synchronize configuration across
servers.

Solution
Use the NGINX Plus–exclusive configuration synchronization feature. To configure
this feature, follow these steps.

Install the nginx-sync package from the NGINX Plus package repository.

NGINX Plus with YUM package manager:

$ sudo yum install nginx-sync

NGINX Plus with APT package manager:

$ sudo apt install nginx-sync

Grant the primary machine SSH access as root to the peer machines.

Generate an SSH authentication key pair for root, and retrieve the public key:

$ sudo ssh-keygen -t rsa -b 2048
$ sudo cat /root/.ssh/id_rsa.pub
ssh-rsa AAAAB3Nz4rFgt...vgaD root@node1

Get the IP address of the primary node:

$ ip addr
1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

142 | Chapter 12: High-Availability Deployment Modes

2: eth0: mtu 1500 qdisc pfifo_fast state UP group default qlen \
 1000
 link/ether 52:54:00:34:6c:35 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.2/24 brd 192.168.1.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fe34:6c35/64 scope link
 valid_lft forever preferred_lft forever

The ip addr command will dump information about interfaces on the machine.
Disregard the loopback interface, which is normally the first. Look for the IP
address following inet for the primary interface. In this example, the IP address
is 192.168.1.2.

Distribute the public key to the root user’s authorized_keys file on each peer node,
and specify to authorize only from the primary IP address:

$ sudo echo 'from="192.168.1.2" ssh-rsa AAAAB3Nz4rFgt...vgaD \
 root@node1' >> /root/.ssh/authorized_keys

Add the following line to /etc/ssh/sshd_config and reload sshd on all nodes:

$ sudo echo 'PermitRootLogin without-password' >> \
 /etc/ssh/sshd_config
$ sudo service sshd reload

Verify that the root user on the primary node can ssh to each of the peer nodes
without a password:

$ sudo ssh root@node2.example.com

Create the configuration file /etc/nginx-sync.conf on the primary machine with the
following configuration:

NODES="node2.example.com node3.example.com node4.example.com"
CONFPATHS="/etc/nginx/nginx.conf /etc/nginx/conf.d"
EXCLUDE="default.conf"

This example configuration demonstrates the three common configuration parame‐
ters for this feature: NODES, CONFPATHS, and EXCLUDE. The NODES parameter is set to
a string of hostnames or IP addresses separated by spaces; these are the peer nodes
to which the primary will push its configuration changes. The CONFPATHS parameter
denotes which files or directories should be synchronized. Lastly, you can use the
EXCLUDE parameter to exclude configuration files from synchronization. In our exam‐
ple, the primary pushes configuration changes of the main NGINX configuration
file and includes the directory /etc/nginx/nginx.conf and /etc/nginx/conf.d to peer
nodes named node2.example.com, node3.example.com, and node4.example.com. If
the synchronization process finds a file named default.conf, it will not be pushed to
the peers because it’s configured as an EXCLUDE.

There are advanced configuration parameters to configure the location of the
NGINX binary, RSYNC binary, SSH binary, diff binary, lockfile location, and backup

12.4 NGINX Plus Configuration Synchronization | 143

directory. There is also a parameter that utilizes sed to template the given files. For
more information about the advanced parameters, see the NGINX documentation for
Synchronizing NGINX Configuration in a Cluster.

Test your configuration:

$ nginx-sync.sh -h # display usage info
$ nginx-sync.sh -c node2.example.com # compare config to node2
$ nginx-sync.sh -C # compare primary config to all peers
$ nginx-sync.sh # sync the config & reload NGINX on peers

Discussion
This NGINX Plus–exclusive feature enables you to manage multiple NGINX Plus
servers in an HA configuration by updating only the primary node and synchroniz‐
ing the configuration to all other peer nodes. By automating the synchronization of
the configuration, you limit the risk of mistakes when transferring configurations.
The nginx-sync.sh application provides some safeguards to prevent sending bad
configurations to the peers. They include testing the configuration on the primary,
creating backups of the configuration on the peers, and validating the configuration
on the peer before reloading. Although it’s preferable to synchronize your configura‐
tion by using configuration management tools or Docker, the NGINX Plus configu‐
ration synchronization feature is valuable if you have yet to make the big leap to
managing environments in this way.

12.5 State Sharing with NGINX Plus and Zone Sync
Problem
You need NGINX Plus to synchronize its shared memory zones across a fleet of
highly available servers.

Solution
Configure zone synchronization, then use the sync parameter when configuring an
NGINX Plus shared memory zone:

stream {
 resolver 10.0.0.2 valid=20s;

 server {
 listen 9000;
 zone_sync;
 zone_sync_server nginx-cluster.example.com:9000 resolve;
 # ... Security measures
 }
}

144 | Chapter 12: High-Availability Deployment Modes

https://oreil.ly/bsEjm

http {
 upstream my_backend {
 zone my_backend 64k;
 server backends.example.com resolve;
 sticky learn zone=sessions:1m
 create=$upstream_cookie_session
 lookup=$cookie_session
 sync;
 }

 server {
 listen 80;
 location / {
 proxy_pass http://my_backend;
 }
 }
}

Discussion
The zone_sync module is an NGINX Plus–exclusive feature that enables NGINX
Plus to truly cluster. As shown in the configuration, you must set up a stream
server configured as the zone_sync. In the example, this is the server listening
on port 9000. NGINX Plus communicates with the rest of the servers defined by
the zone_sync_server directive. You can set this directive to a domain name that
resolves to multiple IP addresses for dynamic clusters, or statically define a series
of zone_sync_server directives to avoid single points of failure. You should restrict
access to the zone_sync_server; there are specific SSL/TLS directives for this module
for machine authentication.

The benefit of configuring NGINX Plus into a cluster is that you can synchronize
shared memory zones for rate limiting, sticky-learn sessions, and the key-value store.
The example provided shows the sync parameter tacked on to the end of a sticky
learn directive. In this example, a user is bound to an upstream server based on a
cookie named session. Without the zone_sync module, if a user makes a request
to a different NGINX Plus server, they could lose their session. With the zone_sync
module, all of the NGINX Plus servers are aware of the session and which upstream
server it’s bound to.

12.5 State Sharing with NGINX Plus and Zone Sync | 145

CHAPTER 13

Advanced Activity Monitoring

13.0 Introduction
To ensure that your application is running at optimal performance and precision,
you need insight into the monitoring metrics about its activity. NGINX offers various
monitoring options such as stub status or an advanced monitoring dashboard and
a JSON feed in NGINX Plus. The NGINX Plus activity monitoring provides insight
into requests, upstream server pools, caching, health, and more. Further application
integrated observability is also available with the use of OpenTelemetry. This chapter
details the power and possibilities of monitoring with NGINX.

13.1 Enable NGINX Stub Status
Problem
You need to enable basic monitoring for NGINX.

Solution
Enable the stub_status module in a location block within an NGINX HTTP
server:

location /stub_status {
 stub_status;
 allow 127.0.0.1;
 deny all;
 # Set IP restrictions as appropriate
}

147

Test your configuration by making a request for the status:

$ curl localhost/stub_status
Active connections: 1
server accepts handled requests
 1 1 1
Reading: 0 Writing: 1 Waiting: 0

Discussion
The stub_status module enables some basic monitoring of the NGINX server.
The information that is returned provides insight into the number of active connec‐
tions, as well as the total connections accepted, connections handled, and requests
served. The current number of connections being read, written, or in a waiting
state is also shown. The information provided is global and is not specific to the
parent server where the stub_status directive is defined. This means that you
can host the status on a protected server. For security reasons we blocked all
access to the monitoring feature except local traffic. This module provides active
connection counts as embedded variables for use in logs and elsewhere. These vari‐
ables are $connections_active, $connections_reading, $connections_writing,
and $connections_waiting.

13.2 Enabling the NGINX Plus Monitoring Dashboard
Problem
You require in-depth metrics about the traffic flowing through your NGINX Plus
server.

Solution
Utilize the real-time activity monitoring dashboard:

server {
 # ...
 location /api {
 api write=on;
 # Directives limiting access to the API
 # See chapter 7
 }

 location = /dashboard.html {
 root /usr/share/nginx/html;
 }
}

148 | Chapter 13: Advanced Activity Monitoring

The NGINX Plus configuration serves the NGINX Plus status monitoring dashboard.
This configuration sets up an HTTP server to serve the API and the status dashboard.
The dashboard is served as static content out of the /usr/share/nginx/html directory.
The dashboard makes requests to the API at /api/ in order to retrieve and display the
status in real time.

Discussion
NGINX Plus provides an advanced status monitoring dashboard. This status dash‐
board provides a detailed status of the NGINX system, such as number of active
connections, uptime, upstream server pool information, and more. For a glimpse of
the console, see Figure 13-1.

Figure 13-1. The NGINX Plus status dashboard

The landing page of the status dashboard provides an overview of the entire system.
Clicking into the HTTP Zones tab lists details about all HTTP servers configured
in the NGINX configuration, detailing the number of responses from 1XX to 5XX
and an overall total, as well as requests per second and the current traffic throughput
(Figure 13-2). The HTTP Upstreams tab details upstream server status: if the server
is in a failed state, how many requests it has served, and a total of how many
responses have been served by status code, as well as other statistics such as how
many health checks it has passed or failed. The TCP/UDP Zones tab details the
amount of traffic flowing through the TCP or UDP streams and the number of

13.2 Enabling the NGINX Plus Monitoring Dashboard | 149

connections. The TCP/UDP Upstreams tab shows information about how much each
of the upstream servers in the TCP/UDP upstream pools is serving, as well as health
check pass and fail details and response times. The Caches tab displays information
about the amount of space utilized for cache; the amount of traffic served, written,
and bypassed; as well as the hit ratio. The NGINX status dashboard is invaluable in
monitoring the heart of your applications and traffic flow.

Figure 13-2. An NGINX Plus status dashboard HTTP Zones page

See Also
NGINX Plus Status Dashboard Demo

13.3 Collecting Metrics Using the NGINX Plus API
Problem
You need API access to the detail metrics provided by the NGINX Plus status
dashboard.

Solution
Utilize the RESTful API to collect metrics. The examples pipe the output through
json_jq to make them easier to read:

150 | Chapter 13: Advanced Activity Monitoring

https://oreil.ly/20j1Q

$ curl "https://demo.nginx.com/api/9/" | json_jq
[
 "nginx",
 "processes",
 "connections",
 "slabs",
 "http",
 "stream",
 "resolvers",
 "ssl",
 "workers"
]

The curl call requests the top level of the API, which displays other portions of the
API.

To get information about the NGINX Plus server, use the /api/{version}/nginx URI:

$ curl "https://demo.nginx.com/api/9/nginx" | json_jq
{
 "address" : "10.3.0.7",
 "build" : "nginx-plus-r30",
 "generation" : 1,
 "load_timestamp" : "2023-08-15T11:38:35.603Z",
 "pid" : 622,
 "ppid" : 621,
 "timestamp" : "2023-08-22T20:49:21.717Z",
 "version" : "1.25.1"
}

To limit information returned by the API, use arguments:

$ curl "https://demo.nginx.com/api/9/nginx?fields=version,build" \
 | json_jq
{
 "build" : "nginx-plus-r30",
 "version" : "1.25.1"
}

You can request connection statistics from the /api/{version}/connections URI:

$ curl "https://demo.nginx.com/api/9/connections" | json_jq
{
 "accepted" : 9884385,
 "active" : 4,
 "dropped" : 0,
 "idle" : 127
}

13.3 Collecting Metrics Using the NGINX Plus API | 151

You can collect request statistics from the /api/{version}/http/requests URI:

$ curl "https://demo.nginx.com/api/9/http/requests" | json_jq
{
 "total" : 52107833,
 "current" : 2
}

You can retrieve statistics about a particular server zone using the /api/{version}/http/
server_zones/{httpServerZoneName} URI:

$ curl "https://demo.nginx.com/api/9/http/server_zones/hg.nginx.org" \
 | json_jq
{
 "discarded" : 0,
 "processing" : 0,
 "received" : 308357,
 "requests" : 10633,
 "responses" : {
 "1xx" : 0,
 "2xx" : 10633,
 "3xx" : 0,
 "4xx" : 0,
 "5xx" : 0,
 "codes" : {
 "200" : 10633
 },
 "total" : 10633
 },
 "sent" : 1327232700,
 "ssl" : {
 "handshake_timeout" : 0,
 "handshakes" : 10633,
 "handshakes_failed" : 0,
 "no_common_cipher" : 0,
 "no_common_protocol" : 0,
 "peer_rejected_cert" : 0,
 "session_reuses" : 0,
 "verify_failures" : {
 "expired_cert" : 0,
 "no_cert" : 0,
 "other" : 0,
 "revoked_cert" : 0
 }
 }
}

The API can return any bit of data you can see on the dashboard. It has depth and
follows a logical pattern. You can find links to resources at the end of this recipe.

152 | Chapter 13: Advanced Activity Monitoring

Discussion
The NGINX Plus API can return statistics about many parts of the NGINX Plus
server. You can gather information about the NGINX Plus server and its processes,
connections, and slabs. You can also find information about http and stream
servers running within NGINX, including servers, upstreams, upstream servers, and
key-value stores, as well as information and statistics about HTTP cache zones. This
provides you or third-party metric aggregators with an in-depth view of how your
NGINX Plus server is performing.

See Also
NGINX HTTP API Module Documentation

NGINX API REST UI

“Using the Metrics API” Tutorial

13.4 OpenTelemetry for NGINX
Problem
You have a tracing collector that supports OpenTelemetry (OTel) and want to inte‐
grate NGINX.

Solution
Install the NGINX OTel module from NGINX’s package repository.

NGINX Plus with YUM package manager:

$ sudo yum install -y nginx-plus-module-otel

NGINX Plus with APT package manager:

$ sudo apt install -y nginx-plus-module-otel

NGINX Open Source with YUM package manager:

$ sudo yum install -y nginx-module-otel

NGINX Open Source with APT package manager:

$ sudo apt install -y nginx-module-otel

13.4 OpenTelemetry for NGINX | 153

https://oreil.ly/qyKjs
https://oreil.ly/X76kf
https://oreil.ly/WxkUp

Load the NGINX OTel dynamic module and configure an OTel-capable receiver:

load_module modules/ngx_otel_module.so;
...
http {

 otel_exporter {
 endpoint localhost:4317;
 }

 server {
 listen 127.0.0.1:8080;

 location / {
 otel_trace on;
 otel_trace_context inject;

 proxy_pass http://backend;
 }
 }
}

NGINX inherits a trace context from an incoming request, records a span, and
propagates the trace to backend servers by setting the otel_trace_conext directive
to propagate:

server {
 location / {
 otel_trace on;
 otel_trace_context propagate;
 proxy_pass http://backend;
 }
}

You can inherit the trace context from incoming requests and record the span for
only 10% of traffic by only enabling otel_trace in conjunction with split_clients:

trace 10% of requests
split_clients "$otel_trace_id" $ratio_sampler {
 10% on;
 * off;
}

server {
 location / {
 otel_trace $ratio_sampler;
 otel_trace_context propagate;

 proxy_pass http://backend;
 }
}

154 | Chapter 13: Advanced Activity Monitoring

There are some cases where you may want to ensure that tracing is on for every
request, such as when debugging an issue. NGINX’s map functionality can be used
to create an OR logic gate. In the following update to the example we will assign a
value of on or off to a variable using the map functionality. The map will be based off
an HTTP header named ENABLE_OTEL_TRACE. Another map will be used to produce
a variable, the value of which will be equal to on if either the request is in the 10%
split_clients or if the ENABLE_OTEL_TRACE header is present:

trace 10% of requests
split_clients "$otel_trace_id" $ratio_sampler {
 10% on;
 * off;
}

Always trace when ENABLE_OTEL_TRACE header has a value
map "$http_enable_otel_trace" $has_trace_header {
 default on;
 '' off;
}

Or statement to turn on otel_trace if either of the
above cases enable it
map "$ratio_sampler:$has_trace_header" $request_otel {
 off:off off;
 on:on on;
 on:off on;
 off:on on;
}

server {
 location / {
 otel_trace $request_otel;
 otel_trace_context propagate;

 proxy_pass http://backend;
 }
}

Alternatively if NGINX Plus is being used, you can utilize the NGINX Plus API and
the key-value store to enable and disable 100% tracing for certain sessions:

KV store to enable dynamic 100% tracing
keyval "otel.trace" $trace_switch zone=otel_kv;

trace 10% of requests
split_clients "$otel_trace_id" $ratio_sampler {
 10% on;
 * off;
}

Or statement to turn on otel_trace if any of the

13.4 OpenTelemetry for NGINX | 155

above cases enable it
map "$trace_switch:$ratio_sampler" $request_otel {
 off:off off;
 on:on on;
 on:off on;
 off:on on;
}

server {
 location / {
 otel_trace $request_otel;
 otel_trace_context propagate;

 proxy_pass http://backend;
 }
 location /api {
 api write=on;
 }
}

Discussion
OpenTelemetry is a collection of SDKs, APIs, and tools used to instrument applica‐
tions in order to generate and collect telemetry data. This data is streamed to systems
such as Jaeger and Prometheus, which enable engineers to trace calls through the
application stack, thus providing precise observability. The NGINX OTel module
integrates with these telemetry systems by collecting data about the request, setting
the tracestate and traceparent headers on the request, and then sending this data
to an OpenTelemetry receiver.

In this section, the NGINX ngx_otel_module was loaded dynamically, and provided
a receiver to which to send telemetry data. The otel_trace_context directive, which
can be configured to extract, inject, propagate, or ignore the traceparent and
tracestate headers, was configured to propagate. The propagate parameter com‐
bines the extract and inject methods, where extract sources tracestate and
traceparent from the HTTP headers, and inject creates new values and sets them
for the upstream request. When using propagate, new IDs are only created when the
HTTP header is not already set.

In a busy system, recording trace data on all requests can be a bit excessive. The
example taught you how to use the split_clients module to only send trace data for
10% of requests. The example was improved further to allow developers the ability to
ensure their requests are traced by setting a request header to enable tracing. These
options were joined with the map module to create an OR logic gate, where tracing is
only set to off if both cases return off.

156 | Chapter 13: Advanced Activity Monitoring

See Also
NGINX Plus OTel Module Documentation

“Announcing NGINX Plus R29” (with OpenTelemetry Support)

OpenTelemetry Documentation

NGINX OpenTelemetry Project on GitHub

Split Clients Module Documentation

NGINX Plus API Module Documentation

NGINX Plus Key-Value Module Documentation

NGINX Open Source OpenTelemetry Module

13.5 Prometheus Exporter Module
Problem
You are deploying NGINX into an environment using Prometheus monitoring and
need NGINX statistics.

Solution
Use the NGINX Prometheus Exporter to harvest NGINX statistics and ship them to
Prometheus.

The NGINX Prometheus Exporter module is written in GoLang and distributed as a
binary on GitHub and can be found as a prebuilt container image on Docker Hub.

By default, the exporter will be started for NGINX and will only harvest the stub_sta
tus information. To run the exporter for NGINX Open Source, ensure stub status
is enabled (if it’s not, there is more information on how to do so in Recipe 13.1). Then
use the following Docker command:

$ docker run -p 9113:9113 nginx/nginx-prometheus-exporter:0.8.0 \
 -nginx.scrape-uri http://{nginxEndpoint}:8080/stub_status

To use the exporter with NGINX Plus, a flag must be used to switch the exporter’s
context because much more data can be collected from the NGINX Plus API. You can
learn how to turn on the NGINX Plus API in Recipe 13.2. Use the following Docker
command to run the exporter for an NGINX Plus environment:

$ docker run -p 9113:9113 nginx/nginx-prometheus-exporter:0.8.0 \
 -nginx.plus -nginx.scrape-uri http://{nginxPlusEndpoint}:8080/api

13.5 Prometheus Exporter Module | 157

https://oreil.ly/lPuBq
https://oreil.ly/L10Rt
https://oreil.ly/WZCV9
https://oreil.ly/Yy5Zq
https://oreil.ly/YitHX
https://oreil.ly/eVVkK
https://oreil.ly/CK3F5
https://oreil.ly/7lbp1
https://oreil.ly/TmUEo
https://oreil.ly/mC_i9

Discussion
Prometheus is an extremely common metric monitoring solution that is very preva‐
lent in the Kubernetes ecosystem. The NGINX Prometheus Exporter module is a
fairly simple component; however, it enables prebuilt integration between NGINX
and common monitoring platforms. In NGINX, stub_status does not provide a vast
amount of data, but its data is important to provide insight into the amount of work
an NGINX node is handling. The NGINX Plus API enables many more statistics
about the NGINX Plus server, all of which the exporter ships to Prometheus. In either
case, the information gleaned is valuable monitoring data, and the work to ship this
data to Prometheus is already done; you just need to wire it up and take advantage of
the insight provided by NGINX statistics.

See Also
NGINX Prometheus Exporter GitHub

NGINX stub_status Module Documentation

NGINX Plus API Module Documentation

NGINX Plus Monitoring Dashboard

158 | Chapter 13: Advanced Activity Monitoring

https://oreil.ly/WaUDA
https://oreil.ly/vtP6k
https://oreil.ly/K6Rif
https://oreil.ly/55IGt

CHAPTER 14

Debugging and Troubleshooting
with Access Logs, Error Logs,

and Request Tracing

14.0 Introduction
Logging is the basis of understanding your application. With NGINX you have great
control over logging information that is meaningful to you and your application.
NGINX allows you to divide access logs into different files and formats for different
contexts and to change the log level of error logging to get a deeper understanding
of what’s happening. The capability of streaming logs to a centralized server comes
innately to NGINX through its Syslog logging capabilities. NGINX also enables
tracing of requests as they move through a system. In this chapter, we discuss access
and error logs, streaming over the Syslog protocol, and tracing requests end to end
with request identifiers generated by NGINX.

14.1 Configuring Access Logs
Problem
You need to configure access log formats to add embedded variables to your request
logs.

Solution
Configure an access log format:

http {
 log_format geoproxy

159

 '[$time_local] $remote_addr '
 '$realip_remote_addr $remote_user '
 '$proxy_protocol_server_addr $proxy_protocol_server_port '
 '$request_method $server_protocol '
 '$scheme $server_name $uri $status '
 '$request_time $body_bytes_sent '
 '$geoip_city_country_code3 $geoip_region '
 '"$geoip_city" $http_x_forwarded_for '
 '$upstream_status $upstream_response_time '
 '"$http_referer" "$http_user_agent"';
 # ...
}

This log format configuration is named geoproxy and uses a number of embedded
variables to demonstrate the power of NGINX logging. This configuration shows the
local time on the server when the request was made, the IP address that opened
the connection, and the IP of the client as NGINX understands it per geoip_proxy
or realip_header instructions. The GeoIP module is not included by default with
NGINX; therefore, NGINX would need to be built from source with this module
configured. See Recipe 3.2 for how to install the GeoIP module

The variables prefixed with $proxy_protocol_server_ provide information about
the server from the PROXY protocol header, when the proxy_protocol parameter
is used on the listen directive of the server. $remote_user shows the username of
the user, authenticated by basic authentication, followed by the request method and
protocol, as well as the scheme, such as HTTP or HTTPS. The server name match is
logged as well as the request URI and the return status code.

Statistics logged include the processing time in milliseconds and the size of the body
sent to the client. Information about the country, region, and city are logged. The
HTTP header X-Forwarded-For is included to show if the request is being forwarded
by another proxy. The upstream module enables some embedded variables that we’ve
used that show the status returned from the upstream server and how long the
upstream request takes to return. Lastly, we’ve logged some information about where
the client was referred from and what browser the client is using.

An optional escape parameter can specify what type of escaping is done on the
string; default, json, and none are escape values. The none value disables escaping.
For default escaping, the characters " and \ and other characters with values less
than 32 or above 126 are escaped as \xXX. If the variable value is not found, a hyphen
(-) will be logged. For json escaping, all characters not allowed in JSON strings will
be escaped: the characters " and \ are escaped as \" and \\; characters with values
less than 32 are escaped as \n, \r, \t, \b, \f, or \u00XX.

160 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

This log configuration renders a log entry that looks like the following:

[25/Nov/2016:16:20:42 +0000] 10.0.1.16 192.168.0.122 Derek
GET HTTP/1.1 http www.example.com / 200 0.001 370 USA MI
"Ann Arbor" - 200 0.001 "-" "curl/7.47.0"

To use this log format, use the access_log directive, providing a logfile path and the
format name geoproxy as parameters, which refers to the log format name created in
the first step of this solution:

server {
 access_log /var/log/nginx/access.log geoproxy;
 # ...
}

The access_log directive takes a logfile path and the format name as parameters.
This directive is valid in many contexts and in each context can have a different
log path and/or log format. Named parameters such as buffer, flush, and gzip
configure how often logs are written to the logfile and if the file is gzipped or not. Not
to be confused with the if block, a parameter named if exists for the access_log
directive and takes a condition; if the condition evaluates to 0 or an empty string, the
access will not be logged.

Discussion
The log module in NGINX allows you to configure log formats for many different
scenarios to log to numerous logfiles as you see fit. You may find it useful to configure
a different log format for each context, where you use different modules and employ
those modules’ embedded variables, or a single catchall format that provides all
the information you could ever want. It’s also possible to log in JSON or XML,
provided you construct the format string in that manner. These logs will aid you in
understanding your traffic patterns, client usage, who your clients are, and where
they’re coming from. Access logs can also aid you in finding lag in responses and
issues with upstream servers or particular URIs. Access logs can be used to parse and
play back traffic patterns in test environments to mimic real user interaction. There
are limitless possibilities for logs when troubleshooting, debugging, or analyzing your
application or market.

14.2 Configuring Error Logs
Problem
You need to configure error logging to better understand issues with your NGINX
server.

14.2 Configuring Error Logs | 161

Solution
Use the error_log directive to define the log path and the log level:

error_log /var/log/nginx/error.log warn;

The error_log directive requires a path; however, the log level is optional, and
defaults to error. This directive is valid in every context except for if statements.
The log levels available are debug, info, notice, warn, error, crit, alert, or emerg.
The order in which these log levels were introduced is also the order of severity from
least to most. The debug log level is only available if NGINX is configured with the
--with-debug flag.

Discussion
The error log is the first place to look when configuration files are not working
correctly. The log is also a great place to find errors produced by application servers
like FastCGI. You can use the error log to debug connections down to the worker,
memory allocation, client IP, and server. The error log cannot be formatted. However,
it follows a specific format of date, followed by the level, then the message.

14.3 Forwarding to Syslog
Problem
You need to forward your logs to a Syslog listener to aggregate logs to a centralized
service.

Solution
Use the error_log and access_log directives to send your logs to a Syslog listener:

error_log syslog:server=10.0.1.42 info;

access_log syslog:server=10.0.1.42,tag=nginx,severity=info geoproxy;

The syslog parameter for the error_log and access_log directives is followed by a
colon and a number of options. These options include the required server flag that
denotes the IP, DNS name, or Unix socket to connect to, as well as optional flags
such as facility, severity, tag, and nohostname. The server option takes a port
number, along with IP addresses or DNS names. However, it defaults to UDP 514.
The facility option refers to the facility attribute of the log message, one of the
23 attributes defined in the RFC standard for Syslog; the default value is local7. The
tag option tags the message with a value. This value defaults to nginx. severity
defaults to info and denotes the severity of the message being sent. The nohostname

162 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

flag disables the adding of the hostname field into the Syslog message header and
does not take a value.

Discussion
Syslog is a standard protocol for sending log messages and collecting those logs on
a single server or collection of servers. Sending logs to a centralized location helps
in debugging when you’ve got multiple instances of the same service running on
multiple hosts. This is called aggregating logging. Aggregating logs allows you to
view logs together in one place without having to jump from server to server and
mentally stitch together logfiles by timestamp. A common log aggregation stack is
Elasticsearch, Logstash, and Kibana, also known as the ELK Stack. NGINX makes
streaming these logs to your Syslog listener easy with the access_log and error_log
directives.

14.4 Debugging Configs
Problem
You’re getting unexpected results from your NGINX server.

Solution
Debug your configuration, and remember these tips:

• NGINX processes requests by looking for the most specific matched rule. This•
makes stepping through configurations by hand a bit harder, but it’s the most
efficient way for NGINX to work. There’s more about how NGINX processes
requests in the documentation link in the “See Also” section.

• You can turn on debug logging. For debug logging, you’ll need to ensure that•
your NGINX package is configured and built with the --with-debug flag. Most
of the common packages have it, but if you’ve built your own or are running
a minimal package, you may want to at least double-check by running nginx
-V. Once you’ve ensured you have debug enabled, you can set the error_log
directive’s log level to debug: error_log /var/log/nginx/error.log debug.

• You can enable debugging for particular connections. The debug_connection•
directive is valid inside the events context and takes an IP or CIDR range as
a parameter. The directive can be declared more than once to add multiple IP
addresses or CIDR ranges to be debugged. This may be helpful to debug an issue
in production without degrading performance by debugging all connections.

14.4 Debugging Configs | 163

• You can debug for only particular virtual servers. Because the error_log direc‐•
tive is valid in the main http, mail, stream, server, and location contexts, you
can set the debug log level in only the contexts you need it.

• You can enable core dumps and obtain backtraces from them. Core dumps can•
be enabled through the operating system or through the NGINX configuration
file. You can read more about this from the admin guide in the “See Also” section.

• You’re able to log what’s happening in rewrite statements with the rewrite_log•
directive on: rewrite_log on.

Discussion
The NGINX tool is vast, and the configuration enables you to do many amazing
things. However, with the power to do amazing things, there’s also the power to shoot
yourself in the foot. When debugging, make sure you know how to trace your request
through your configuration; if you have problems, add the debug log level to help.
The debug log is quite verbose but very helpful in finding out what NGINX is doing
with your request and where in your configuration you’ve gone wrong.

See Also
NGINX Request Processing

Debugging NGINX Admin Guide

NGINX rewrite_log Module Documentation

14.5 Request Tracing
Problem
You need to correlate NGINX logs with application logs to have an end-to-end
understanding of a request.

Solution
Use the request identifying variable and pass it to your application to log as well:

log_format trace '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent" '
 '"$http_x_forwarded_for" $request_id';
upstream backend {
 server 10.0.0.42;
}
server {
 listen 80;

164 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

https://oreil.ly/gw9Vy
https://oreil.ly/IfLMF
https://oreil.ly/VYumB

 # Add the header X-Request-ID to the response to the client
 add_header Request-ID $request_id;
 location / {
 proxy_pass http://backend;
 # Send the header X-Request-ID to the application
 proxy_set_header X-Request-ID $request_id;
 access_log /var/log/nginx/access_trace.log trace;
 }
}

In this example configuration, a log_format named trace is set up, and the variable
$request_id is used in the log. This $request_id variable is also passed to the
upstream application by use of the proxy_set_header directive to add the request
ID to a header when making the upstream request. The request ID is also passed
back to the client through use of the add_header directive, setting the request ID in a
response header.

Discussion
Made available in NGINX Plus R10 and NGINX Open Source version 1.11.0, the
$request_id variable provides a randomly generated string of 32 hexadecimal char‐
acters that can be used to uniquely identify requests. By passing this identifier to
the client as well as to the application, you can correlate your logs with the requests
you make. From the frontend client, you will receive this unique string as a response
header and can use it to search your logs for the entries that correspond. You will
need to instruct your application to capture and log this header in its application logs
to create a true end-to-end relationship between the logs. With this advancement,
NGINX makes it possible to trace requests through your application stack.

See Also
Recipe 13.4, OpenTelemetry for NGINX

14.5 Request Tracing | 165

CHAPTER 15

Performance Tuning

15.0 Introduction
Tuning NGINX will make an artist of you. Performance tuning of any type of server
or application is always dependent on a number of variable items, such as, but
not limited to, the environment, use case, requirements, and physical components
involved. It’s common to practice bottleneck-driven tuning, meaning to test until
you’ve hit a bottleneck, determine the bottleneck, tune for limitations, and repeat
until you’ve reached your desired performance requirements. In this chapter, we
suggest taking measurements when performance tuning by testing with automated
tools and measuring results. This chapter also covers connection tuning for keeping
connections open to clients as well as upstream servers, and serving more connec‐
tions by tuning the operating system.

15.1 Automating Tests with Load Drivers
Problem
You need to automate your tests with a load driver to gain consistency and repeatabil‐
ity in your testing.

Solution
Use an HTTP load-testing tool such as Apache JMeter, Locust, Gatling, or whatever
your team has standardized on. Create a configuration for your load-testing tool
that runs a comprehensive test on your web application. Run your test against your
service. Review the metrics collected from the run to establish a baseline. Slowly ramp
up the emulated user concurrency to mimic typical production usage and identify

167

points of improvement. Tune NGINX and repeat this process until you achieve your
desired results.

Discussion
Using an automated testing tool to define your test gives you a consistent test to build
metrics from when tuning NGINX. You must be able to repeat your test and measure
performance gains or losses to conduct science. Running a test before making any
tweaks to the NGINX configuration to establish a baseline gives you a basis to
work from so that you can measure if your configuration change has improved
performance or not. Measuring for each change made will help you identify where
your performance enhancements come from.

15.2 Controlling Cache at the Browser
Problem
You need to increase performance by caching on the client side.

Solution
Use client-side cache-control headers:

location ~* \.(css|js)$ {
 expires 1y;
 add_header Cache-Control "public";
}

This location block specifies that the client can cache the content of CSS and
JavaScript files. The expires directive instructs the client that their cached resource
will no longer be valid after one year. The add_header directive adds the HTTP
response header Cache-Control to the response, with a value of public, which allows
any caching server along the way to cache the resource. If we specify private, only
the client is allowed to cache the value.

Discussion
Cache performance has many factors, disk speed being high on the list. There are
many things within the NGINX configuration that you can do to assist with cache
performance. One option is to set headers of the response in such a way that the
client actually caches the response and does not make the request to NGINX at all,
but simply serves it from its own cache.

168 | Chapter 15: Performance Tuning

15.3 Keeping Connections Open to Clients
Problem
You need to increase the number of requests allowed to be made over a single
connection from clients and increase the amount of time that idle connections are
allowed to persist.

Solution
Use the keepalive_requests and keepalive_timeout directives to alter the number
of requests that can be made over a single connection and change the amount of time
idle connections can stay open:

http {
 keepalive_requests 320;
 keepalive_timeout 300s;
 # ...
}

The keepalive_requests directive defaults to 100, and the keepalive_timeout
directive defaults to 75 seconds.

Discussion
Typically, the default number of requests over a single connection will fulfill client
needs because browsers these days are allowed to open multiple connections to a
single server per FQDN. The number of parallel open connections to a domain is still
typically limited to a number less than 10, so in this regard, many requests over a
single connection will happen. A trick for HTTP/1.1 commonly employed by content
delivery networks is to create multiple domain names pointed to the content server
and alternate which domain name is used within the code to enable the browser
to open more connections. You might find these connection optimizations helpful
if your frontend application continually polls your backend application for updates,
because an open connection that allows a larger number of requests and stays open
longer will limit the number of connections that need to be made.

15.4 Keeping Connections Open Upstream
Problem
You need to keep connections open to upstream servers for reuse to enhance your
performance.

15.3 Keeping Connections Open to Clients | 169

Solution
Use the keepalive directive in the upstream context to keep connections open to
upstream servers for reuse:

proxy_http_version 1.1;
proxy_set_header Connection "";

upstream backend {
 server 10.0.0.42;
 server 10.0.2.56;

 keepalive 32;
}

The keepalive directive in the upstream context activates a cache of connections that
stay open for each NGINX worker. The directive denotes the maximum number of
idle connections to keep open per worker. The proxy module directives used above
the upstream block are necessary for the keepalive directive to function properly for
upstream server connections. The proxy_http_version directive instructs the proxy
module to use HTTP version 1.1, which allows for multiple requests to be made
in serial over a single connection while it’s open. The proxy_set_header directive
instructs the proxy module to strip the default header of close, allowing the connec‐
tion to stay open.

Discussion
You want to keep connections open to upstream servers to save the amount of time
it takes to initiate the connection, allowing the worker process to instead move
directly to making a request over an idle connection. It’s important to note that the
number of open connections can exceed the number of connections specified in the
keepalive directive because open connections and idle connections are not the same.
The number of keepalive connections should be kept small enough to allow for
other incoming connections to your upstream server. This small NGINX tuning trick
can save some cycles and enhance your performance.

15.5 Buffering Responses
Problem
You need to buffer responses between upstream servers and clients in memory to
avoid writing responses to temporary files.

170 | Chapter 15: Performance Tuning

Solution
Tune proxy buffer settings to allow NGINX the memory to buffer response bodies:

server {
 proxy_buffering on;
 proxy_buffer_size 8k;
 proxy_buffers 8 32k;
 proxy_busy_buffer_size 64k;
 # ...
}

The proxy_buffering directive is either on or off; by default it’s on. The
proxy_buffer_size denotes the size of a buffer used for reading the first part of the
response and response headers from the proxied server and defaults to either 4k or
8k, depending on the platform. The proxy_buffers directive takes two parameters:
the number of buffers and the size of the buffers. By default, the proxy_buffers
directive is set to a number of 8 buffers of size either 4k or 8k, depending on the
platform. The proxy_busy_buffer_size directive limits the size of buffers that can be
busy, sending a response to the client while the response is not fully read. The busy
buffer size defaults to double the size of a proxy buffer or the buffer size. If proxy
buffering is disabled, the request cannot be sent to the next upstream server in the
event of a failure because NGINX has already started sending the request body.

Discussion
Proxy buffers can greatly enhance your proxy performance, depending on the typical
size of your response bodies. Tuning these settings can have adverse effects and
should be done by observing the average body size returned and performing thor‐
ough and repeated testing. Extremely large buffers, set when they’re not necessary,
can eat up the memory of your NGINX box. For optimal performance, you can set
these settings for specific locations that are known to return large response bodies.

See Also
NGINX proxy_request_buffering Module Documentation

15.6 Buffering Access Logs
Problem
You need to buffer logs to reduce the opportunity of blocks to the NGINX worker
process when the system is under load.

15.6 Buffering Access Logs | 171

https://oreil.ly/zL1LK

Solution
Set the buffer size and flush time of your access logs:

http {
 access_log /var/log/nginx/access.log main buffer=32k
 flush=1m gzip=1;
}

The buffer parameter of the access_log directive denotes the size of a memory
buffer that can be filled with log data before being written to disk. The flush param‐
eter of the access_log directive sets the longest amount of time a log can remain
in a buffer before being written to disk. When using gzip, the logs are compressed
before being written to the log—values of level 1 (fastest, less compression) through 9
(slowest, best compression) are valid.

Discussion
Buffering log data into memory may be a small step toward optimization. However,
for heavily requested sites and applications, this can make a meaningful adjustment
to the usage of the disk and CPU. When using the buffer parameter to the
access_log directive, logs will be written out to disk if the next log entry does
not fit into the buffer. If using the flush parameter in conjunction with the buffer
parameter, logs will be written to disk when the data in the buffer is older than the
time specified. When tailing the log, and with buffering enabled, you may see delays
up to the amount of time specified by the flush parameter.

15.7 OS Tuning
Problem
You need to tune your operating system to accept more connections to handle spike
loads or highly trafficked sites.

Solution
Check the kernel setting for net.core.somaxconn, which is the maximum number of
connections that can be queued by the kernel for NGINX to process. If you set this
number over 512, you’ll need to set the backlog parameter of the listen directive
in your NGINX configuration to match. A sign that you should look into this kernel
setting is if your kernel log explicitly says to do so. NGINX handles connections very
quickly, and, for most use cases, you will not need to alter this setting.

172 | Chapter 15: Performance Tuning

Raising the number of open file descriptors is a more common need. In Linux, a file
handle is opened for every connection; therefore, NGINX may open two if you’re
using it as a proxy or load balancer because of the open connection upstream. To
serve a large number of connections, you may need to increase the file descriptor
limit system-wide with the kernel option sys.fs.file_max, or, for the system user,
ensure NGINX is running as in the /etc/security/limits.conf file. When doing so, you’ll
also want to bump the number of worker_connections and worker_rlimit_nofile.
Both of these configurations are directives in the NGINX configuration.

Enable more ephemeral ports to support more connections. When NGINX acts as
a reverse proxy or load balancer, every connection upstream opens a temporary
port for return traffic. Depending on your system configuration, the server may not
have the maximum number of ephemeral ports open. To check, review the setting
for the kernel setting net.ipv4.ip_local_port_range. The setting is a lower- and
upper-bound range of ports. It’s typically OK to set this kernel setting from 1024 to
65535. 1024 is where the registered TCP ports stop, and 65535 is where dynamic or
ephemeral ports stop. Keep in mind that your lower bound should be higher than the
highest open listening service port.

Discussion
Tuning the operating system is one of the first places you look when you start tuning
for a high number of connections. There are many optimizations you can make to
your kernel for your particular use case. However, kernel tuning should not be done
on a whim, and changes should be measured for their performance to ensure the
changes are helping. As stated before, you’ll know when it’s time to start tuning
your kernel from messages logged in the kernel log or when NGINX explicitly logs a
message in its error log.

15.7 OS Tuning | 173

Index

A
A/B testing, 25-26
access control, 171

(see also security controls)
country-based restrictions, 30-31
IP-based, 77
logs, 159-161, 171
RBAC, 135

Access-Control-Allow-Origin header, 79
access_log directive, 161, 162, 172
active health checks, 10, 22-23
active-passive failover, 113-114, 137
activity monitoring, 147-158

logging (see logging)
metrics collection, 150-153
monitoring dashboard, 148-150
OTel integration for tracing collector,

153-156
Prometheus Exporter module, 157-158
stub status, 147-148

add_header directive, 79, 165, 168
Advanced F5 Application Security, 97
advanced package tool (APT), 2
aggregating logs, 162
ALB (Application Load Balancer), 142
alias directive, 8
allow directive, 78
AlmaLinux, 2
Alpine Linux, 128
Alt-Svc header, 100
Amazon Elastic Compute Cloud (Amazon

EC2), 110-111, 141
Amazon Elastic Container Registry, 128
Amazon Machine Image (AMI), 110-111

Amazon Route 53 DNS service, 114, 141
Amazon Web Services (AWS), auto-

provisioning on, 110-111
Ansible, 56-57
Ansible Automation Platform, 57
Ansible Galaxy, 57
API gateway, NGINX as, 122-126
App Protect module, 93
Application Load Balancer (ALB), 142
app_protect_* directives, 94
app_protect_enable directive, 95
app_protect_policy_file directive, 95
app_protect_security_log directive, 95
APT (advanced package tool), 2
APT package manager

configuration synchronization, 142
GeoIP installation, 27, 28
njs module to expose JavaScript, 52
OpenTelemetry for NGINX, 153
SAML authentication, 72

authentication, 63-75
configuration synchronization, 142, 145
HTTP basic, 63-65
JWKs, 68-69
JWKS caching, 71
JWTs, 52, 66-67, 70
NGINX Plus certificate for, 3
OIDC identity provider, 69
preshared API keys, 124
SAML identity provider, 72-75
satisfy directive, 92
subrequests, 65-66

auth_basic directive, 64
auth_basic_user_file directive, 64

175

auth_jwt directive, 66, 67
auth_jwt_key_file directive, 66, 70
auth_jwt_key_request directive, 71
auth_request directive, 65
auth_request_set directive, 66
Auto Scaling group, 114, 115-117, 127, 141
auto-provisioning on AWS, 109-111
automatic blocklist, building, 93-94
automating tests with load drivers, 167
automation (see programmability)
availability zones, 141
AWS (Amazon Web Services), auto-

provisioning on, 110-111
AWS Application Load Balancer (AWS ALB),

142
AWS Elastic Load Balancing (AWS ELB), 32, 89
AWS Network Load Balancer (AWS NLB),

115-117, 141
Azure (see Microsoft Azure)

B
backlog parameter, listen directive, 172
bandwidth, limiting, 35, 108
blue-green deployment, 26
bottleneck-driven tuning, 167
buffer parameter, access_log directive, 172
buffering access logs, 171
buffering responses, 170
bypassing the cache, 41

C
C modules, 55
C programming language, 54
cache slice module, 44
Cache-Control response header, 168
cache_lock directive, 44
caching, 37-44

automatic caching of JWKS, 71
bypassing the cache, 41
hash keys, 39
invalidating objects, 42
locking the cache, 40
memory-cache zones, 37-38
performance tuning with, 37, 168
segmenting files to increase efficiency, 43-44
SSL session cache, 82
stale cache, using, 40

canary released deployment, 26
CDNs (content delivery networks), 37

CentOS, 2
certificates

for client-side encryption, 79-82
Google App Engine, 118
installing NGINX Plus, 3
for upstream encryption, 83

Chef, 58-59
classless inter-domain routing (CIDR), 32, 51,

163
client connections, managing, 169, 170
client-side caching, 37, 168
client-side encryption, 79-82
client/server binding, 17-20
cloud deployments, 109-119

auto-provisioning on AWS, 109-111
with Google App Engine proxy, 118-119
load balancing over scale sets on Azure, 117
machine image with GCP, 112
NLB sandwich, 115-117, 141
routing to nodes without load balancer,

113-114
VM with Azure, 111-112

cluster-aware key-value store, 49, 51
cluster-aware rate limit, building, 93-94
code owners, 126
commands, 5
configuration, 6

(see also authentication; programmability)
AMI configuration management, 110
for client-side encryption, 80-82
with Consul templating, 59
debugging configs, 163-164
HTTP/2, 99-100
HTTP/3 over QUIC, 100-101
includes for clean configs, 6
NGINX App Protect WAF Module, 94-97
NGINX image from Docker Hub, 127
synchronizing for HA deployment modes,

142-144
CONFPATHS parameter, 143
connection draining, 20, 47-49
connections

client connections, 169, 170
debugging, 163
least connections load balancing, 15
limiting in traffic management, 32-33
upstream connections, 169

Consul templating, 59-61
consul-template daemon, 60

176 | Index

containers, 121-136
API gateway, NGINX as, 122-126
for configuration management, 144
container image, NGINX Plus, 132
DNS SRV records, 126
Dockerfile, creating NGINX, 128-132
environment variables in NGINX, 133
Kubernetes ingress controller, 134-136
official NGINX image, 127
Prometheus Exporter module, 157-158

content delivery networks (CDNs), 37
cookie management with sticky directive, 17-20
core dumps, enabling, 164
country-based restrictions with GeoIP module,

90-91
Crilly, Liam, 122
cross-origin resource sharing (CORS), 78-79
crypt() (C function), for authentication, 64
curl command

collecting metrics, 151
connection draining, 47-49
HTTP authentication test, 64
key-value store, 50
request testing, 4

D
daemon, starting NGINX as, 4
DaemonSet, Kubernetes, 135
datagrams, 14
Debian, 1-2
debug logging, turning on, 163
debugging, 159-165

access log configuration, 159-161
bypassing cache for, 42
error log configuration, 161
request tracing, 164
server configuration, 163-164
Syslog listener, forwarding to, 162

debug_connection directive, 163
deny directive, 78
Deploying NGINX as an API Gateway (Crilly),

122
Deployment versus DaemonSet methods,

ingress controller, 135
DNS

Amazon Route 53 service, 114, 141
Consul’s interface for, 60
distributing to NGINX nodes, 140
Google App Engine proxy, 118

DNS SRV records, 14, 126
Docker

configuration management with, 144
image building, 128-132

docker build command, 133
docker command, 128
Docker Hub, NGINX image from, 127
Dockerfile, creating images, 127, 128-133
DoS module, 93
drain parameter, 20
dynamic DDoS mitigation, 92-94
DynDNS, 141

E
Elastic Load Balancing (AWS ELB), 32, 89
Elliptic Curve Cryptography (ECC) formatted

keys, 82
encryption, 67, 79-83, 103
enforcementMode, App Protect Policy, 95
environment variables in NGINX, 133
ephemeral ports, enabling, 173
error logs, configuring, 161
error_log directive, 162, 163
escape parameter, logging, 160
EXCLUDE parameter, 143
expect directive, match block, 23
expire date, securing a location with, 85-86
expired cache, using, 40
expires directive, 168
expiring link, generating, 86-88

F
f4f module, 107
f4f_buffer_size directive, 108
failover

active-passive, 137
Amazon Route 53, 113-114
with DNS load balancing, 141
HA mode, 140

FastCGI virtual servers, 7
file descriptors, number for OS tuning, 173
files and directories, 4
firewall, 57, 94-97
Flash Video (FLV) format, 105
flush parameter, access_log directive, 172
Forwarded header, 32
FQDN (fully qualified domain name), 141, 169

Index | 177

G
GCP (Google Cloud Platform), 112
generic hash load balancing, 15, 16
geography, routing NGINX nodes by, 114
GeoIP module, 27-30, 90-91, 160
GeoIP2, 27
geoip_city directive, 29
geoip_country directive, 28
geoip_proxy_recursive directive, 31
geoip2_proxy directive, 31
geoproxy log format configuration, 160
GoLang, Prometheus Exporter Module, 157
Google App Engine proxy, 118-119
Google Cloud Images, 113
Google Cloud Platform (GCP), 112
Google Compute Cloud, 118
Google Compute Engine, 118
Google Compute Image, 113
Google’s load balancer, 32
gRPC method calls, 102-104
grpc_pass directive, 102

H
HA deployment modes (see High Availability

deployment modes)
hash digest, 85
hash directive, 16
hash keys, 39
hashlib library, Python, 85
HDS (HTTP Dynamic Streaming), 107
head-of-line blocking, HTTP, 99
health checks, 10

active, 10, 22-23
Amazon Route 53, 114
DNS load balancing, 141
EC2 load balancing, 141
passive, 10, 21
stream, 22
TCP/UDP, 149

health_check directive, 22
High-Availability (HA) deployment modes,

137-145
configuration synchronization, 142-144
DNS, load-balancing load balancers with,

141
EC2, load balancing on, 141
HA mode, 137-140
state sharing with zone sync, 144-145

HLS (HTTP Live Stream) module, 106

hls_buffers directive, 107
horizontal scaling, 9
HSTS (HTTP Strict Transport Security), 90
HTML5 video, 44
htpasswd command, 64
HTTP

access module, 77
authentication, 63-67
health checks, 22
IP hash load balancing, 16
limit_conn_zone directive, 33
load balancing, 10
proxy module SSL rules, 83
sticky cookie directive, 17
versus stream context, 12

http block, 12
HTTP Dynamic Streaming (HDS), 107
HTTP Live Stream (HLS) module, 106
http SSL module, 81
HTTP Strict Transport Security (HSTS), 90
HTTP/2, 99-100, 102-104
HTTP/3 over QUIC, 99, 100-101
http2 directive, 100
HTTPS

redirects, 88-89
upstream encryption, 83

http_auth_request_module, 65

I
IaaS (infrastructure as a service), 109
identity provider (IdP)

OIDC, 69
SLO, 74

inactive parameter, proxy_cache_path, 38
include directive, 6, 123
index directive, 8
infrastructure as a service (IaaS), 109
ingress controller, 134-136
installation, 1-4

with Ansible, 56-57
with Chef, 58-59
on Debian/Ubuntu, 1-2
HA keepalived, 137-140
NGINX Plus, 3
nginx-sync package, 142
njs module, 51-54
OTel module, 153
on RedHat/Oracle Linux/AlmaLinux/Rocky

Linux, 2

178 | Index

verifying, 3
internal_redirect directive, 66
invalidating objects, caching, 42
ip addr command, 143
IP address

access based on, 77
adding multiple addresses to DNS A record,

141
connection debugging, 163
EC2 and virtual addresses, 140
finding original client, 31
and keepalived, 140
limiting connections by, 32-33
limiting request rate by, 34-35
load distribution via DNS, 141

IP hash load balancing, 15, 16
ip_hash directive, 17

J
JavaScript, 51-54, 72-75
Jinja2 templating language, 57
JSON Web Key Set (JWKS), 71
JSON Web Keys (JWKs), 68-69
JSON Web Signature, 71
JSON Web Tokens (JWTs), 52, 66-67, 70

K
keepalive directive, 170
keepalived, 137
keepalive_requests directive, 169
keepalive_timeout directive, 169
kernel tuning, 173
key-value store, 49-51, 70, 94
keyval directive, 50
keyval_zone directive, 50, 94
kty attribute, JWK file, 68
Kubernetes, 134-136, 158

L
LDAP (Lightweight Directory Access Protocol),

64
least connections load balancing, 15
least time load balancing, 16
least_conn directive, 15
least_time directive, 16, 121
levels parameter, proxy_cache_path, 38
Lightweight Directory Access Protocol (LDAP),

64

limiting bandwidth, 35, 108
limiting connections, 32-33
limiting rate of requests, 34-35, 125
limit_conn directive, 32-33
limit_conn_dry_run directive, 33, 35
limit_conn_zone directive, 33
limit_rate directive, 36
limit_rate_after directive, 36
limit_req directive, 34
limit_req_log_level directive, 35
limit_req_zone directive, 94
listen directive

access log configuration, 160
OS tuning, 172
quic parameter, 101
serving static content, 8
UDP load balancing, 13, 14

load balancing, 9-24
Amazon EC2, 141
AWS ELB, 32
AWS NLB, 115-117, 141
Azure, 117
client/server binding, 17-20
and connection draining, 20
in containerized environment, 121
DNS SRV records for, 127
gRPC calls, 103
health checks, 10, 21-23
and high-availability, 137
HTTP servers, 10
methods, 14-17
routing to nodes without, 113-114
slow start, 24
TCP servers, 11-13, 22
UDP servers, 13-14

load-testing tools, 167
LoadBalancer service type, Kubernetes, 135
load_module directive, 28, 94, 133
location blocks, 8, 22, 84, 124
location directive, 8, 103
locking the cache, 40
log module, 161
logging

access logs, 159-161, 171
aggregating logs, 162
app_protect_security_log directive, 95
in containerized environment, 121
error logs, 161
escape parameter, 160

Index | 179

Syslog, 162
turning on debug logging, 163

lsb_release command, 2
Lua module, 54

M
map module, 155, 156
match block for stream servers, 22
max_size parameter, proxy_cache_path, 38
md5 hash, 84
media streaming (see streaming media)
memory-cache zones, 37-38, 50, 71
microservice architectures, 119, 126
Microsoft Azure, 32

load balancing over scale sets on, 117
VM with, 111-112
VMSS, 117

ModSecurity 3.0 NGINX module, 77
monitoring (see activity monitoring)
MP4 format

bandwidth limits for, 108
and FLV in NGINX, 105
HLS in MP4, 106

mp4_limit_rate directive, 108
mp4_limit_rate_after directive, 108

N
net.core.somaxconn kernel setting, 172
net.ipv4.ip_local_port_range kernel setting, 173
network address translation (NAT), 33
network load balancer (NLB), 115-117, 141
network time protocol (NTP) servers, 13
nghttp utility, 100
NGINX, 1-8

as API gateway, 122-126
authentication with, 63-66
commands, 5
container image in, 127, 128-132
extending with common programming lan‐

guage, 54-56
files, directories, and commands, 4-6
includes for clean configurations, 6
installing, 1-4
MP4 and FLV streaming media, 105
nginx-module-geoip, 27
serving static content, 7-8
stub status, enabling, 147-148

NGINX App Protect WAF Module, 57, 94-97
nginx command, 4

NGINX GPG package, 2
NGINX JavaScript (njs) module, 51-54
NGINX Plus, 1

authentication with, 66-75
client/server binding, 17-20
configuration synchronization, 142-144
connection draining, 20
container image in, 132
DNS SRV records, 126
dynamic DDoS mitigation, 92-94
dynamic environment configuration, 45-49
HA deployment modes, 137-145
health checks, 10, 22-23
installing, 3
invalidating objects from cache, 42
key-value store setup, 49-51
Kubernetes ingress controller, 134
least time load balancing, 16
monitoring dashboard, 148-150
NGINX App Protect WAF Module, 94-97
nginx-plus-module-geoip, 27
Prometheus Exporter Module, 157
streaming media with HLS and HDS,

106-108
NGINX Plus API, 20, 45-49

(see also programmability)
connection draining with, 20
enabling adding and removing servers,

45-49
metrics collecting with, 150-153
OTel integration features, 155
server statistics from, 151-153

nginx-ha-keepalived package, 137-140
nginx-ha-setup script, 138, 140
nginx-module-geoip package, 27
nginx-plus-module-geoip package, 27
nginx-sync package, 142
nginx-sync.sh application, 144
nginx_config resource, Chef, 58
nginx_config role, Ansible, 56
nginx_http_internal_redirect_module, 66
nginx_http_perl_module, 133
nginx_ingress namespace and service account,

134
nginx_site resource, Chef, 58
ngx object, Lua module, 55
ngx_http_ssl_module, 80
ngx_otel_module, 156
ngx_stream_ssl_module, 80

180 | Index

njs (NGINX JavaScript) module, 51-54, 72-75
NLB (network load balancer), 115-117, 141
NodePort service type, Kubernetes load bal‐

ancer, 135
NODES parameter, configuration synchroniza‐

tion, 143
NTP (network time protocol) servers, 13

O
open file descriptors, raising number of, 173
OpenID Connect (OIDC) identity provider, 69
OpenShift, 128
openssl command, 64, 85
openssl passwd command, 64
OpenTelemetry (OTel), 153-156
OpenVPN service, 13
OS tuning, 172
otel_trace_context directive, 154, 156

P
Packer, HashiCorp, 110
passive health checks, 10, 21
passwords, authentication, 63-65
performance tuning, 167-173

access log buffering, 171
automating tests with load drivers, 167
buffering responses, 170
caching, 37, 168
keeping client connections open, 169
keeping upstream connections open, 169
OS tuning, 172

Perl module, 55, 133
perl_set directive, 55, 133
preshared API keys, 124
programmability, 45-60

Ansible, installing with, 56-57
Chef, installing and configuring, 58-59
Consul templating, 59-61
dynamic environment configuration, 45-49
extending NGINX, 54-56
key-value store setup, 49-51
njs module for exposing JavaScript, 51-54

Prometheus Exporter Module, 157-158
propagate parameter, OTel, 156
proxies

buffering responses, 171
finding original client IP address, 31
Google App Engine, 118-119
gRPC method calls, 102-104

HTTP proxy module SSL rules, 83
proxy directives, 83
PROXY protocol, Kubernetes, 136, 160
proxy_buffering directive, 171
proxy_buffers directive, 171
proxy_busy_buffer_size directive, 171
proxy_cache directive, 38
proxy_cache_bypass directive, 41
proxy_cache_key directive, 39, 44
proxy_cache_lock directive, 40
proxy_cache_lock_age directive, 40
proxy_cache_lock_timeout directive, 40
proxy_cache_path directive, 37-38
proxy_cache_purge directive, 43
proxy_cache_use_stale directive, 40
proxy_http_version directive, 170
proxy_pass directive, 26, 83, 118
proxy_pass_request_body directive, 66
proxy_protocol parameter, 160
proxy_responses directive, 14
proxy_set_header directive, 165, 170
proxy_ssl_certificate directive, 83
proxy_ssl_certificate_key directive, 83
proxy_ssl_crl directive, 83
proxy_ssl_protocols directive, 83
proxy_timeout directive, 14
ps command, 4
purging cache, 42
Python, 57, 85, 87

Q
quic parameter, 101
QUIC protocol, 99, 100-101

R
random directive, 16
random load balancing, 16
rate-limiting module, 34-35
RBAC (role-based access control), 135
Real IP module, 160
RedHat Enterprise Linux (RHEL), 2
reloading configuration, 6
request ID, tracing requests, 164
request method, CORS, 78-79
request tracing, 164
require directive, 23
resolve parameter, server directive, 127
resolver directive, 118, 127
reuseport parameter, 13, 14

Index | 181

rewrite directive, NGINX as API gateway, 124
rewrite_log directive, 164
RHEL (RedHat Enterprise Linux), 2
Rocky Linux, 2
role-based access control (RBAC), 135
root directive, 8
round-robin load balancing, 15, 114, 141
Route 53 DNS service, 114, 141
RSA formatted key, 82

S
SAML authentication, 72-75
SAML Single Logout (SLO), 74
satisfy directive, 92
scale sets, virtual machine, 117
secrets, 84-85
secure link module, 84, 85
Secure Sockets Layer (SSL) configurations, 7
secure_link directive, 86
secure_link_md5 directive, 86
secure_link_secret directive, 84
security controls, 77-97

App Protect module, 93
authentication (see authentication)
caching hash key, 39
client-side encryption, 79-82
CORS, allowing, 78-79
country-based restrictions with GeoIP mod‐

ule, 90-91
DoS module, 93
dynamic DDoS mitigation, 92-94
expiration methods for securing location,

85-88
Google App Engine proxy, 118
HSTS, 90
HTTPS redirects, 88-89
IP address limits, 32-35, 77
JWKs, 69
location block, securing, 84
NGINX App Protect WAF Module, 94-97
NGINX as API gateway, 124
satisfying multiple methods, 92
secrets, 84-85
upstream encryption, 83

segmenting files to increase efficiency, 43-44
send directive, match block, 23
server block

restricting access based on country, 31
serving static files over HTTP, 7

setting upstream service outside of, 123
TCP load balancing, 11

server directive, 11, 118, 127
server slow_start directive, 24
servers, adding and removing with NGINX

Plus, 20, 45-49
server_drain directive, 20
server_name directive, 8
session state, 9, 16, 18, 20
shared memory zones, 34, 125, 144-145
slice directive, 43-44
slicing, cache, 43-44
slow start, load balancing, 24
split_clients module, 25, 156
SSL (Secure Sockets Layer) configurations, 7
SSL modules, 80
SSL/TLS

client-side encryption, 79-82
HTTP/2 considerations, 100
and HTTPS redirects, 89
proxying gRPC connections, 102
QUIC protocol, 101
upstream encryption, 83
zone_sync_server directive, 145

ssl_certificate directive, 80
ssl_certificate_key directive, 80
ssl_protocol directive, 101
stale cache, using, 40
state sharing with zone sync, 144-145
stateful versus stateless applications, 9
static content, serving, 7-8
sticky_cookie directive, 17
sticky_learn directive, 18
sticky_route directive, 19
stream access module, 77
stream block, 12
stream health checks, 22
stream module, 11-14
stream server, 145
stream SSL module, 81
streaming media, 105-108

bandwidth limits with NGINX Plus, 108
HDS, 107
HLS in MP4, 106
MP4 and FLV, 105

Strict-Transport-Security header, 90
stub_status directive, 148
stub_status module, 147-148, 157
subrequests, authentication, 65-66

182 | Index

sync parameter
DDoS attack mitigation, 94
zone configuration, 144

sys.fs.file_max kernel option, 173
Syslog listener, 162
syslog parameter, 162

T
TCP protocol

head-of-line blocking problem, 99
load balancing, 11-13, 22

TCP/UDP health checks, 149
TLS (see SSL/TLS)
tracing collector, OTel integration for, 153-156
traffic management, 25-36

A/B testing, 25-26
access restrictions based on country, 30-31
GeoIP module and database, 27-30
and key-value store with NGINX Plus,

49-51
limiting bandwidth per client, 108
limiting connections, 32-33
limiting rate of requests by predefined key,

34-35
original client IP address, finding, 31-32

troubleshooting (see debugging)
type parameter, key-value store, 51

U
Ubuntu, 1-2
uniform resource identifier (URI), 8, 126
upstream blocks, 10, 11, 118, 123
upstream connections, 169, 170
upstream encryption, 83
upstream module, 11, 160
user datagram protocol (UDP)

load balancing, 13-14, 22
and QUIC, 99

TCP/UDP health checks, 149
UserData, Amazon EC2, 111

V
valid override parameter, resolver directive, 127
video, cache slice module for, 44
Virtual Machine Scale Set (VMSS), 117
virtual machines (VMs)

cloud configurations with Packer, 110
creating NGINX image on Azure, 111-112
with Google Cloud Images, 113

Virtual Router Redundancy Protocol (VRRP),
140

VMSS (Virtual Machine Scale Set), 117

W
web application firewall (WAF), 57, 77

X
X-Forwarded-For header, 32, 160
X-Forwarded-Proto header, 89

Y
YAML file

Ansible configuration, 57
for NGINX Plus Deployment manifest, 135

YUM package manager, 3
configuration synchronization, 142
GeoIP installation, 27, 28
njs module to expose JavaScript, 52
OpenTelemetry for NGINX, 153
SAML authentication, 72

Z
zone synchronization, 144-145
zone_sync module, 145
zone_sync_server directive, 145

Index | 183

About the Author
Derek DeJonghe has a passion for technology. His background and experience in
web development, system administration, and networking give him a well-rounded
understanding of modern web architecture. Derek led a team of site reliability and
cloud solution engineers and produced self-healing, autoscaling infrastructure over
the span of 10 years with a boutique consulting group.

He’s now focused on both creating the foundation of a specialized incubator that
helps startups bootstrap their cloud environments and development tooling. Derek
lends his cloud and development leadership experience to entrepreneurs developing
their go-to market strategy and to their team members who are coding their way
to future technology. With a proven track record for resilient cloud architecture,
Derek pioneers cloud deployments for security and maintainability that are in the
best interest of his clients.

Colophon
The animal on the cover of NGINX Cookbook is the Eurasian lynx (Lynx lynx), the
largest of the lynx species, found in a broad geographical range from Western Europe
to Central Asia. This wild cat has striking vertical tufts of dark fur atop its ears, with
rough long hair on its face. Its fur is yellow-gray to gray-brown with white coloring
on the underbelly. This lynx is spattered with dark spots. Northern-dwelling variants
tend to be grayer and less spotted than their southern counterparts.

Unlike other lynx species, the Eurasian lynx preys on larger ungulates—hooved
animals—such as wild deer, moose, and even domesticated sheep. Adults require two
to five pounds of meat each day and will feed on a single source of food for up to a
week.

The Eurasian lynx came close to extinction in the mid-20th century but subsequent
conservation efforts have brought the cat’s conservation status to Least Concern.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Shaw’s Zoology. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	NGINX
	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us

	Chapter 1. Basics
	1.0 Introduction
	1.1 Installing NGINX on Debian/Ubuntu
	Problem
	Solution
	Discussion

	1.2 Installing NGINX Through the YUM Package Manager
	Problem
	Solution
	Discussion

	1.3 Installing NGINX Plus
	Problem
	Solution
	Discussion

	1.4 Verifying Your Installation
	Problem
	Solution
	Discussion

	1.5 Key Files, Directories, and Commands
	Problem
	Solution
	Discussion

	1.6 Using Includes for Clean Configs
	Problem
	Solution
	Discussion

	1.7 Serving Static Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. High-Performance Load Balancing
	2.0 Introduction
	2.1 HTTP Load Balancing
	Problem
	Solution
	Discussion

	2.2 TCP Load Balancing
	Problem
	Solution
	Discussion

	2.3 UDP Load Balancing
	Problem
	Solution
	Discussion

	2.4 Load-Balancing Methods
	Problem
	Solution
	Discussion

	2.5 Sticky Cookie with NGINX Plus
	Problem
	Solution
	Discussion

	2.6 Sticky Learn with NGINX Plus
	Problem
	Solution
	Discussion

	2.7 Sticky Routing with NGINX Plus
	Problem
	Solution
	Discussion

	2.8 Connection Draining with NGINX Plus
	Problem
	Solution
	Discussion

	2.9 Passive Health Checks
	Problem
	Solution
	Discussion
	See Also

	2.10 Active Health Checks with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	2.11 Slow Start with NGINX Plus
	Problem
	Solution
	Discussion

	Chapter 3. Traffic Management
	3.0 Introduction
	3.1 A/B Testing
	Problem
	Solution
	Discussion
	See Also

	3.2 Using the GeoIP Module and Database
	Problem
	Solution
	Discussion
	See Also

	3.3 Restricting Access Based on Country
	Problem
	Solution
	Discussion

	3.4 Finding the Original Client
	Problem
	Solution
	Discussion

	3.5 Limiting Connections
	Problem
	Solution
	Discussion

	3.6 Limiting Rate
	Problem
	Solution
	Discussion

	3.7 Limiting Bandwidth
	Problem
	Solution
	Discussion

	Chapter 4. Massively Scalable Content Caching
	4.0 Introduction
	4.1 Caching Zones
	Problem
	Solution
	Discussion
	See Also

	4.2 Caching Hash Keys
	Problem
	Solution
	Discussion

	4.3 Cache Locking
	Problem
	Solution
	Discussion

	4.4 Use Stale Cache
	Problem
	Solution
	Discussion
	See Also

	4.5 Cache Bypass
	Problem
	Solution
	Discussion

	4.6 Cache Purging with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	4.7 Cache Slicing
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Programmability and Automation
	5.0 Introduction
	5.1 NGINX Plus API
	Problem
	Solution
	Discussion
	See Also

	5.2 Using the Key-Value Store with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	5.3 Using the njs Module to Expose JavaScript Functionality Within NGINX
	Problem
	Solution
	Discussion
	See Also

	5.4 Extending NGINX with a Common Programming Language
	Problem
	Solution
	Discussion
	See Also

	5.5 Installing with Ansible
	Problem
	Solution
	Discussion
	See Also

	5.6 Installing with Chef
	Problem
	Solution
	Discussion
	See Also

	5.7 Automating Configurations with Consul Templating
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Authentication
	6.0 Introduction
	6.1 HTTP Basic Authentication
	Problem
	Solution
	Discussion

	6.2 Authentication Subrequests
	Problem
	Solution
	Discussion

	6.3 Validating JWTs with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	6.4 Creating JSON Web Keys
	Problem
	Solution
	Discussion
	See Also

	6.5 Authenticate Users via Existing OpenID Connect SSO with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	6.6 Validate JSON Web Tokens (JWT) with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	6.7 Automatically Obtaining and Caching JSON Web Key Sets with NGINX Plus
	Problem
	Solution
	Discussion
	See Also

	6.8 Configuring NGINX Plus as a Service Provider for SAML Authentication
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Security Controls
	7.0 Introduction
	7.1 Access Based on IP Address
	Problem
	Solution
	Discussion

	7.2 Allowing Cross-Origin Resource Sharing
	Problem
	Solution
	Discussion

	7.3 Client-Side Encryption
	Problem
	Solution
	Discussion
	See Also

	7.4 Advanced Client-Side Encryption
	Problem
	Solution
	Discussion
	See Also

	7.5 Upstream Encryption
	Problem
	Solution
	Discussion

	7.6 Securing a Location
	Problem
	Solution
	Discussion

	7.7 Generating a Secure Link with a Secret
	Problem
	Solution
	Discussion

	7.8 Securing a Location with an Expire Date
	Problem
	Solution
	Discussion

	7.9 Generating an Expiring Link
	Problem
	Solution
	Discussion

	7.10 HTTPS Redirects
	Problem
	Solution
	Discussion

	7.11 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX
	Problem
	Solution
	Discussion

	7.12 HTTP Strict Transport Security
	Problem
	Solution
	Discussion
	See Also

	7.13 Restricting Access Based on Country
	Problem
	Solution
	Discussion
	See Also

	7.14 Satisfying Any Number of Security Methods
	Problem
	Solution
	Discussion

	7.15 NGINX Plus Dynamic Application Layer DDoS Mitigation
	Problem
	Solution
	Discussion
	See Also

	7.16 Installing and Configuring NGINX Plus with the NGINX App Protect WAF Module
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. HTTP/2 and HTTP/3 (QUIC)
	8.0 Introduction
	8.1 Enabling HTTP/2
	Problem
	Solution
	Discussion
	See Also

	8.2 Enabling HTTP/3
	Problem
	Solution
	Discussion
	See Also

	8.3 gRPC
	Problem
	Solution
	Discussion

	Chapter 9. Sophisticated Media Streaming
	9.0 Introduction
	9.1 Serving MP4 and FLV
	Problem
	Solution
	Discussion

	9.2 Streaming with HLS with NGINX Plus
	Problem
	Solution
	Discussion

	9.3 Streaming with HDS with NGINX Plus
	Problem
	Solution
	Discussion

	9.4 Bandwidth Limits with NGINX Plus
	Problem
	Solution
	Discussion

	Chapter 10. Cloud Deployments
	10.0 Introduction
	10.1 Auto-Provisioning
	Problem
	Solution
	Discussion

	10.2 Deploying an NGINX VM in the Cloud
	Problem
	Solution
	Discussion

	10.3 Creating an NGINX Machine Image
	Problem
	Solution
	Discussion
	See Also

	10.4 Routing to NGINX Nodes Without a Cloud Native Load Balancer
	Problem
	Solution
	Discussion
	See Also

	10.5 The Load Balancer Sandwich
	Problem
	Solution
	Discussion

	10.6 Load Balancing over Dynamically Scaling NGINX Servers
	Problem
	Solution
	Discussion

	10.7 Creating a Google App Engine Proxy
	Problem
	Solution
	Discussion

	Chapter 11. Containers/Microservices
	11.0 Introduction
	11.1 Using NGINX as an API Gateway
	Problem
	Solution
	Discussion
	See Also

	11.2 Using DNS SRV Records with NGINX Plus
	Problem
	Solution
	Discussion

	11.3 Using the Official NGINX Container Image
	Problem
	Solution
	Discussion
	See Also

	11.4 Creating an NGINX Dockerfile
	Problem
	Solution
	Discussion
	See Also

	11.5 Building an NGINX Plus Container Image
	Problem
	Solution
	Discussion
	See Also

	11.6 Using Environment Variables in NGINX
	Problem
	Solution
	Discussion

	11.7 NGINX Ingress Controller from NGINX
	Problem
	Solution
	Discussion

	Chapter 12. High-Availability Deployment Modes
	12.0 Introduction
	12.1 NGINX Plus HA Mode
	Problem
	Solution
	Discussion
	See Also

	12.2 Load Balancing Load Balancers with DNS
	Problem
	Solution
	Discussion

	12.3 Load Balancing on EC2
	Problem
	Solution
	Discussion

	12.4 NGINX Plus Configuration Synchronization
	Problem
	Solution
	Discussion

	12.5 State Sharing with NGINX Plus and Zone Sync
	Problem
	Solution
	Discussion

	Chapter 13. Advanced Activity Monitoring
	13.0 Introduction
	13.1 Enable NGINX Stub Status
	Problem
	Solution
	Discussion

	13.2 Enabling the NGINX Plus Monitoring Dashboard
	Problem
	Solution
	Discussion
	See Also

	13.3 Collecting Metrics Using the NGINX Plus API
	Problem
	Solution
	Discussion
	See Also

	13.4 OpenTelemetry for NGINX
	Problem
	Solution
	Discussion
	See Also

	13.5 Prometheus Exporter Module
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing
	14.0 Introduction
	14.1 Configuring Access Logs
	Problem
	Solution
	Discussion

	14.2 Configuring Error Logs
	Problem
	Solution
	Discussion

	14.3 Forwarding to Syslog
	Problem
	Solution
	Discussion

	14.4 Debugging Configs
	Problem
	Solution
	Discussion
	See Also

	14.5 Request Tracing
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Performance Tuning
	15.0 Introduction
	15.1 Automating Tests with Load Drivers
	Problem
	Solution
	Discussion

	15.2 Controlling Cache at the Browser
	Problem
	Solution
	Discussion

	15.3 Keeping Connections Open to Clients
	Problem
	Solution
	Discussion

	15.4 Keeping Connections Open Upstream
	Problem
	Solution
	Discussion

	15.5 Buffering Responses
	Problem
	Solution
	Discussion
	See Also

	15.6 Buffering Access Logs
	Problem
	Solution
	Discussion

	15.7 OS Tuning
	Problem
	Solution
	Discussion

	Index
	About the Author

